

Human genetics, applications, opportunities and career prospects

Srinivas Reddy Pallerla B.Pharm, PhD https://srinivaspallerla.weebly.com/

Intro to Human genetics

• Only 2% is coding

- we are 99.9% identical
 (1 in 1000 bps ~ 3 million bases
- This is what that makes us Unique
- These differences can be
- 60 new variants

A day might come where whole genome will be sequenced as soon as we born

Why we need to study genetics?

- Whole exome sequencing
- SNP genotyping microarrays

Advances in Sequencing technologies

13 Years & 3.8 billion \$

12 hours & 1000\$

- UK- 100000, Iceland -100000, Saudi Arabia-100000 samples, US and China 1 Million & faroe islands whole population (PLOS Biology | DOI:10.1371/journal.pbio.1002195)
- 1000 genome project (2504 sequenced & 500 are sequenced from India 118 are ITU (Indian Telugus in UK)

Sequencing technologies

Sanger

Ion Torrent

Roche 454

Illumina *Seq

Pacific Biosciences

Nanopore

illumina

Infinium[®] Global Screening Array-24 v1.0

A powerful, high-quality, economical array for population-scale genetic studies.

Table 1: Product Information

Feature	Description		
Species	Human		
Total Number of Markers	642,824		
Capacity for Custom Bead Types	50,000		
Number of Samples per BeadChip	24		
DNA Input Requirement	200 ng		
Assay Chemistry	Infinium HTS		
Instrument Support	iScan or HiScan [®] System		
Sample Throughput ^a	~ 2304 samples/week		
Seen Time per Semple	iScan System	HiScan System	
Scan nine per Sample	2.5 min	2.0 min	
a. Estimate assumes 1 iScan System, 5-day work week.	1 AutoLoader, 2 Teo	can robots, and a	

Table 2: High-Value Content

Content	No. of Markers	Research Application/Note
ADME Core and Extended Genes	5816	Drug metabolism and excretion
ADME Core and Extended Genes +/- 10 kb	7246	Drug metabolism and excretion (plus regulatory regions)

You can buy genetic testing on AMAZON.com (e-commerce website)

- + Find and connect with new relatives from around the world
- · Provide a saliva sample using our at-home kit and send it back, results ready in about 6-8 weeks
- No additional lab fee required, and you always have the option to upgrade to add health reports for an extra
 cost
- Subject to 23andMe's Terms of Service at 23andme.com/tos and Privacy Statement at 23andme.com/privacy

In Stock. Sold by 23andMe, Inc and Fulfilled by Amazon. Giftwrap available.

Pharmacogenetic testing through the direct-to-consumer genetic testing company 23andMe

Mengfei Lu¹, Cathryn M. Lewis^{1,2} and Matthew Traylor^{1*}

Conclusion: 23andMe reports provide some useful pharmacogenetics information, mirroring clinical tests that are in standard use. Other tests are unspecific, providing limited guidance and may not be useful for patients without professional interpretation. Nevertheless, DTC companies like 23andMe act as a powerful intermediate step to integrate pharmacogenetic testing into clinical practice.

Angelina Jolie gene testing for all?

By James Gallagher Health and science correspondent, BBC News

🛈 18 January 2018 📁 109

Testing all women for the "Angelina Jolie gene", even if not considered at risk, would prevent cancers, save lives and is cost effective, say doctors.

Genetic variation

- Single Nucleotide Polymorphisms
- Most common and well studied form of variation
- Defined by a population frequency > 1%

http://www.gbhealthwatch.com/Trait-Genetics-101.php

Overview:

I. Intro to human genetics, Sequencing and SNP genotyping technologies and applications

II. Pharmacogenetics

III. Application CIRSPR/Cas9 Tech & in basic research and drug discovery,

IV. How genetic studies nailed down a gene that is imp in glucose homeostasis: (My research at CCMB for the past 4 years)T2D complex disease genetics and functional genomics of HKDC1(Hexokinase domain containing gene 1) gene.

V. Career prospects : After Pharmacy

VI. Brief overview on current hot areas in researchBioinformatics and statisticsGut microbiotaMetabolomicsinduced pluripotent stem cells (iPSC)

Pharmacogenomics & Pharmacogenetics: From DNA to Drug Treatment

Your DNA Affects Your Response to Drugs

illumina

Infinium[®] Global Screening Array-24 v1.0

A powerful, high-quality, economical array for population-scale genetic studies.

Table 1: Product Information

Feature	Description		
Species	Human		
Total Number of Markers	642,824		
Capacity for Custom Bead Types	50,000		
Number of Samples per BeadChip	24		
DNA Input Requirement	200 ng		
Assay Chemistry	Infinium HTS		
Instrument Support	iScan or HiScan [®] System		
Sample Throughput ^a	~ 2304 samples/week		
Seen Time per Semple	iScan System	HiScan System	
Scan nine per Sample	2.5 min	2.0 min	
a. Estimate assumes 1 iScan System, 5-day work week.	1 AutoLoader, 2 Teo	can robots, and a	

Table 2: High-Value Content

Content	No. of Markers	Research Application/Note
ADME Core and Extended Genes	5816	Drug metabolism and excretion
ADME Core and Extended Genes +/- 10 kb	7246	Drug metabolism and excretion (plus regulatory regions)

Back to the drugs...

- The utility of pharmacogenetics:
 - Determining appropriate dosing
 - Avoiding unnecessary toxic treatments
 - Ensuring maximal efficacy
 - Reducing adverse side effects
 - Developing or choosing novel treatments
 - Can also explain variable response to illicit drugs

Genetic epidemiology of pharmacogenetic variations in CYP2C9, CYP4F2 and VKORC1 genes associated with warfarin dosage in the Indian population

Figure 2. Allele frequency distribution among north Indians. Distribution of *CYP4F2*3* allele frequency (variant allele T) was shown in various states of India. States are shaded according to minor allele frequency.

Anil K Giri ..., Nazir M Khan'', Sandeep Grover¹¹ ismeet Kaur', Analabha Basu', Nikhil Tandon⁴, Vinod Scaria¹⁸ IGV Consortium, INDICO5, Ritushree Kukreti', Samir K Brahmachari' & Dwaipayan Bharadwaj*12 CSRUbuitmate of Genumics & Integration Buicegy, Gelhi, 110 020, India Acammy of Scientific & Innovation Research (AcSIR), Areasandhan Bhavan, 2 Rali Morg Setts, 110 001, ireta "Antienal Permitte of Boddedcal Kemmers, Kelgani, 281 251, insta-Separatement of Endocrimatogy, All India mitmute of Merical Sciences, New Delhi, 110-028 fm84 1GN Namachamiltum Knowlenge Center for General Priormatics, CSR-institute of Genumics & Integrative Biology, Mathura Rouel, Stelli, 110 000, Imilia "Active for communitiesce. 1at: +91 11 25879246 Fast +101 11 2766 1471 (thighphron.)() Sution contributed equals A complete list of the members of the INDICO consortia can be triund in the entire Sigglementary Meterial

- Pharmacogenomics
 - The science of how genes affect the way people people respond to drugs
 - How genes affect...

...the way our body processes drugs (pharmacokinetics) ...the interaction of drugs with receptors (pharmacodynamics) ...the treatment efficacy and adverse side effects

- Pharmacogenetics
 - A subset of 'pharmacogenomics'
 - The study of how *inherited variation* affects drug response and metabolism

FDA approved pharmacogenetic tests

Gene	Drug	Consequence
TPMT	6MP	Toxicity
CYP2D6	Tamoxifen	Decreased efficacy
UGT1A1	Irinotecan	Toxicity
CYP2D6	Codeine	Ineffective analgesia

For more info browse following web sites:

Warfarin: A dosage story

- Most widely used anticoagulant in the world – A "blood thinner"
- Prescribed doses vary widely (1-40mg / daily)
- Therapuetic index is very low
 - High risk of bleeding early in treatment
- Two genes involved in metabolism: CYP2C9 and VKORC1

Table 1. Content of commercially available absorption, distribution, metabolism and excretion genotyping products compared to the panel developed in this study.

Company	Assay	Number of genes	Number of markers	Design criteria
	ADME Panel	~180	3000 (plus the ability to spike in an additional 72)	Known and putative functional variation in ADME genes as well as tag SNPs that account for blocks of LD across ADME genes
Affymetrix®	DMET™ Plus Premier Pack	225	1936	Known functional and putative functional variants in ADME genes
Sequenom®	iPLEX [®] ADME PGx panel	36	192	99% of ADME core list plus additional functional haplotypes
Illumina®	VeraCode ADME Core Panel	34	184	Known functional variants including deletion and duplications in ADME genes as defined by the PharmaADME working group
Roche®	AmpliChip™ CYP450 Test	2	~22	Known functional variants including deletion and duplications in CYP2D6 and CYP2C19
Progenika®	PHARMAchip	36	~90	Known functional variants including deletion and duplications in PK and PD genes.

ADME: Absorption, distribution, metabolism and excretion; LD: Linkage disequilibrium; PK: Pharmacokinetics; PD: Pharmacodynamics.

Type 2 diabetes complex disease genetics

Post-GWAS (Genome Wide Association Studies) functional genomics of *HKDC1* (Hexokinase domain containing gene 1) locus in glucose homeostasis and metabolism

Srinivas Reddy Pallerla B.Pharm, PhD https://srinivaspallerla.weebly.com/

Supervisor: Dr. GR. Chandak, MD, PhD Center for Cellular and Molecular Biology Hyderabad

I. Background

- T2D is a global problem
- India second highest number of diabetics, 69 million – 2015, reach 123 million by 2040
- Huge economic burden
- T2D can only be treated, but cannot be reversed
- Need to better understand T2D

- Twin and family studies: genetics contribute to the development of T2D
- To understand the genetics of diabetes our lab performed GWAS (Genome wide Association studies)

Genetics of Type 2 diabetes (T2D) in Indians: GWAS

Genetic studies: genotyped 1 million SNPs (Single Nucleotide polymorphisms) Affymetrix array

Type 2 Diabetes Case – Control GWAS Studies - Indian population

• $rs7089312 \& SNP rs7085830 (OR:1.22; P = 2.03x10^{-5} \& OR:1.68; P = 7.38x10^{-9})$ variants in HKDC1 (Hexokinase domain containing gene 1) associated for T2D

Association studies to novel therapeutic targets?

Kazuo et al., Expert Opinion on Therapeutic Targets, 2015

Gene	Index variant	Trait associated with variant	Drug class	Interaction type	Preclinical study in model animals	Clinical trial
KCNJ11/ ABCC8	rs5215	T2D	Sulfonylurea	Inhibitor	Completed	Completed
PPARG	rs4135250	T2D	Thiazolidinedione	Agonist	Completed	Completed
GLP1R	rs10305492	T2D, FG	GLP-1 analogue	Agonist	Completed	Completed
GCK	rs4607517	Fasting glucose, T2D, HOMA-B	Glucokinase activator	Activator	Lowered glucose level	Phase II
GCKR	rs780094	T2D, fasting glucose, triglycerides, fasting insulin	GCKR disrupter	Disrupter	Lowered glucose level	Phase II
ADRA2A	rs10885122	Fasting glucose, T2D, HOMA-B	Alpha2-adrenergic receptor antagonist	Agonist	Improves impaired insulin secretion	Phase I
SLC30A8	rs13266634	Fasting glucose, HOMA B, T2D	Zinc	Substrate	Alleviated the insulin resistance and hyperglycemia	Phase I a
MTNR1B	rs10830963	T2D, beta-cell function	Melatonin, melatonin receptor agonists	Agonist	Decreases insulin secretion	Phase III
ADIPOQ	rs1501299	T2D, HOMA-IR, adiponectin level	AdipoRon	Agonist	Pleiotropic effects	NA
ADCY5	rs11708067	T2D, 2 hour glucose, HOMA- B	Forskolin	NA	Lowered fasting glucose	Phase III
FADS1	rs174550	Fasting glucose, T2D, HOMA-B	Alpha-Linolenic acid, icosapent	Ligand	Improved glucose tolerance	Phase l
MC4R	rs12970134	T2D, BMI, waist circumference, insulin resistance	MC4-agonist	Agonist	Decreased food intake and decreased body weight	Phase II
PAM	rs35658696	T2D	N-alpha-acetyl-3,5- diiodotyrosylglycine	NA	NA	NA

Table 1. T2D-associated genes linked to targets of drugs in clinical or preclinical studies.

Notes: BMI, body mass index; HOMA-B, homeostasis model assessment of beta-cell; HOMA-IR, homeostasis model assessment of insulin resistance; NA, not applicable; T2D, type 2 diabetes..

II. Post-GWAS functional characterization of *HKDC1* locus

Figure 1 Model of enhancer function. Transcriptional enhancer elements are noncoding stretches of DNA that regulate gene expression levels, most often in *cis*. Active enhancer elements are located in open chromatin sensitive to DNase I digestion and flanked by histones marked with H3K4me1 and H3K27ac. Enhancers are often bound by a number of transcription factors (TF), such as p300 (blue). Mediator and cohesin are part of a complex (orange, green and purple) that mediates physical contacts between enhancers and their target promoters.

HKDC1 in glucose homeostasis and metabolism?

Molecular evolution of the vertebrate hexokinase gene family: Identification of a conserved fifth vertebrate hexokinase gene. Irwin & Tan Genomics Proteomics. 2008. – Probable enzyme and highly conserved from early vertebrates to humans

- Hexokinases (HKI, HKII, HKIII & HKIV) : Glucose to Glucose-6-P
- Play important role in development and glucose homeostasis and metabolism
- What is the role of HKDC1 in glucose homeostasis and metabolism?

Key questions:

1. What is the phenotype of *Hkdc1* knockout in mice?

2. Does human *HKDC1* gene code for a protein with the biochemical properties similar to other hexokinases?

• Gestational diabetes GWAS study found variant (rs4746822) in *HKDC1* associated with diabetes during pregnancy (Hayes et al., 2013)

1: *Hkdc1* KO in mouse: diabetic?

- Before generating KO mice gene expression in various tissues
- Adult mouse metabolically active tissues isolated and expression was checked

Expression in adult metabolically active tissues

• GTEx – human tissue expression database Ubiquitous with highest in intestine, thymus & kidney

Hkdc1 is expressed in kidney, brain and pancreas

Hkdc1 KO in mouse: (Work in progress @ CCMB)

Pipeline – Generating Hkdc1 KO mice :

HKDC1 Is a Novel Hexokinase Involved in Whole-Body Glucose Use, Ludvik et al. Endocrinology, 2016.

GWAS resulted in identification of novel gene HKDC1: glucose homeostasis & metabolism

Phenotype ? Causal tissue ? Causal mechanism ?

CCMB Transgenic facility team : Dr. Chandrashekar P (In-charge), Purnima, Jyothi & Sarathi

2. Cloning, expression & biochemical characterization of Human HKDC1

Specific activity - U/mg	Km Glucose- (mM/L)	Km ATP- (mM/L)
0.42 +/-0.1	~0.3	~ 0.2

Amruthanjali & Gunjan (Junior research fellows)

Application of CRISPR gene editing in drug discovery and therapeutics

II. CRISPR/Cas9 genome editing technology

- CRISPR technology is a simple yet powerful tool for editing genomes.
- Faster, cheaper, easier, precise, multiplex gene editing

• Applications of CRISPR technology

Transforming and Translating Drug Discovery – Use of CRISPR/Cas9 in Target Discovery, Hit Finding, Translational Studies & Gene Therapy

Lorenz Mayr, VP & Global Head

IMED Discovery Sciences - Biological Reagents & Assay Development

February 21, 2017 CRISPR 2017, Boston/MA

CRISPR/Cas9 in Drug Discovery Summary

Precise-Genome Editing (PGE) with **CRISPR/Cas9** is a breakthrough technology for drug discovery at Pharma & Biotech with applications in:

- Personalised Medicine ('precision medicine')
- Target Finding
- Target Validation
- Hit/Lead Finding
- Safety & DMPK
- Possibly also Therapeutic Genome Editing (TGE) we are currently building disease models and refine technologies for NHEJ, HDR, delivery technologies

AstraZeneca and our collaboration partners (academia/industry) will continue to drive the future development of CRISPR/Cas9 technologies, and we are very open to additional partnerships ('open innovation')

39 IMED Biotech Unit | Lorenz Mayr | CRISPR 2017 - Boston | February 21, 2017

Jayamuki college of Pharmacy

Careers after pharmacy : INTERDISCIPLINARY KNOWLEDGE imp

Research : Basic or Translational: PhD Diagnostics technologies Marketing Biotechnology: product development Forensics Food technology & analytics Teaching Drug discovery Data scientist: Genetic counselor Managing Clinical trials Managing cohorts (prospective/retrospective)

SKY is the limit

www.bioinformatics.ca

Canadian Bioinformatics Workshops

Careers in Research

- Interdisciplinary Knowledge : Pharmacy + additional knowledge
- IF you aim for something you need to build skills that are necessary in that area (Read books), watch motivational videos, networking, public relations
- Soft skills : communication, writing, presenting,
- Collaborative skills
- Explore information in the area of your interest in public databases
- Imagination is the key for success
- Upgrade your skills in the area of your interest
- Take risks and work hard (Noting is going to be easy _ work hard and smart)

(The me I see the me I will be) : You will be what you think

Gut Microbiota

Gut Microbiota

A healthy diverse microbiome:

- Protects us against pathogens
- Trains our immune system
- Essential for healthy digestion
- Determines whether we are fat or lean
- Enhances brain function and mood
- Reduces the tendency to form kidney stones
- Keeps your skin radiant

https://www.slideshare.net/soulfulpathways/feel-better-already-microbiome-health

100 Trillion Microbes!

Application of Patient derived iPSC in Therapeutics and drug discovery

Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell–Derived Endothelial Cells Yang Lin, Chang-Hyun Gil, Mervin C. Yoder

Metabolomics

General approach to metabolomics

Metabolomics Applications

- Genetic Disease Tests
- Nutritional Analysis
- Clinical Blood Analysis
- Clinical Urinalysis
- Drug Compliance
- Transplant Monitoring

Toxicology Testing **Clinical Trial Testing** Fermentation Monitoring Food & Beverage Tests Nutraceutical Analysis Drug Phenotyping Water Quality Testing Petrochemical Analysis

Bioinformatics is an interdisciplinary field that develops and improves on methods for storing, retrieving, organizing and analyzing biological data. A major activity in bioinformatics is to develop software tools to generate useful biological knowledge.

	O Different branches of Bioinformatics
l	1. Computational Biology
l	2. Genomics
l	3. Proteomics
I	4. Pharmacogenomics
l	5. Pharmacogenetics
l	6. Cheminformatics (Chemical informatics, chemometrics,
l	computational chemistry)
I	7. Structural genomics or structural bioinformatics
l	8. Comparative genomics
l	9. Biophysics
l	10. Biomedical informatics / Medical informatics
l	11. Mathematical Biology
l	12. Computational chemistry
l	13. Functional genomics
l	14. Pharmacoinformatics
l	15. In silico ADME-Tox Prediction
l	16. Agroinformatics / Agricultural informatics
I	17. Systems biology

Genomics, Big Data, and Medicine Seminar Series -- Eric D. Green The Largest Current Bottleneck in Genomics...

Growth of DNA Sequencing

https://goo.gl/3RhFkH

Thank you and happy to receive questions

Future is here...Integromics .. Big Data and Precision Medicine ...

Application of Human genetics and genomics

- Career prospects in research:
- 1. What opportunities you have in research:

Career prospects for pharmacy students:

- Genetics: pharmacogenetics, molecular mechanisms, diagnostics, preventive strategies.
- Next Generation Sequencing technologies
- Big data: Statistics and bioinformatics
- Personalized medicine
- Gene editing technology: CRISPR/Cas9 tech
- iPSC derived invitro models: Drug testing
- Publicly available information : lectures and info
- Interdisciplinary skills
- Gut microbiota
- Metabolomics

Metabolomics Enables Systems Biology

Ultimate goal of these genetic studies

Adapted from Dr. ERIC GREEN, Director, genetic division, NIH, USA

Preliminary study done using CRISPR/Cas9 technology rs7089312 enhancer locus

CRISPR/Cas9 results show deletion of enhancer locus