
SEQUENCING METHODS AND SOPS: NEXT-GENERATION SEQUENCING AND
BIOINFORMATICS (ILLUMINA AND NANOPORE)

I. SARS-CoV-2 Whole Genome Sequencing using 1200bp tiling on Oxford Nanopore MinION.
(Pages: 2 - 29)

Bioinformatic tools - Linux/Shell, ARTIC field bioinformatics, nf-core/viralrecon, Guppy,
MAFFT and IQTR

II. Bacterial Whole Genome Sequencing using long-read/Hybrid Assembly. (Pages: 30 - 52)

Bioinformatic tools - Abricate, FastQC, CheckM, Flye, Unicycler, ITOL, PlasmidFinder and
Bandage

III. Gut microbiota profiling with full-length 16S rRNA using MinION Oxford Nanopore Technology
(ONT) and Metagenomic and Metabolomic analysis (Pages: 53 - 104).

Bioinformatic tools - Centrifuge, Kranken 2, BRAKEN, KRONA and PAVION, NanoCLUST,
Paprica and EPI2ME

Note - Language and Databases: Linux/Shell, NCBI, GISAID, Nextstrain, UCSC Genome Browser,
Greengenes, RDP and SILVA.

2

SARS-CoV-2 Whole Genome Sequencing using
1200bp tiling on Oxford Nanopore MinION

AG Velavan
Institute of Tropical Medicine

Universität Tübingen
Wilhelmstr 27

72074 Tuebingen
Germany

Protocol updates

Version Update summary

1.0 Complete draft protocol

1.1 Adding instruction for using Flongle Flow Cell

1.2

Adding additional Bioinformatics analysis steps,

Adding instruction for using Rapid Barcoding Kit 96 (SQK-

RBK110.96)

3

INDEX
1. Abbreviations ...4
2. Purpose ... 4
3. Principal of the assay .. 4
4. Material .. 5
5. Pre-analytics .. 5
5.1 RNA isolation and quantification ... 5
6. Equipment ...6
7. Reagent and Consumables ..6
8. Primers .. 7
9. Assay procedure ...8
9.1. cDNA synthesis .. 8
9.2 Multiplex PCR .. 10

9.3 Pooling .. 10
9.4 Analyzing on agarose gel electrophoresis ..11
9.5 Purification by AMPure XP Bead ..11
9.6 Quantify the pool using Qubit dsDNA Assay ... 11
9.7 Normalization .. 12
9.8 Barcoding and Concentrate Library ..12
 Using Rapid Barcoding Kit (SQK-RBK004) ... 12
 Using Rapid Barcoding Kit 96 (SQK-RBK110.96) .. 13
9.9 Load to MinION and sequence ...14
 Priming and loading the SpotON Flow Cell R9.4.1 ..14
 Priming and Loading the Flongle flow cell ..15

10. Ending the experiment .. 17
11. Basic bioinformatic for data analysis ... 17
12. Nanopore MinION data analysis ... 21
12.1 Quality control of sequencing data using RAMPART .. 21
12.2 Field-Bioinformatics .. 22
12.3 High accuracy basecalling with guppy .. 23
12.4 Information on nomenclatures, variants, mutations, outbreaks about SARS-
CoV-224
12.4.1 GISAID ... 25

12.4.2 Nextclade and Pangolin to identify the variants and lineages from the
sequences .. 25
12.5 Phylogeny ...28

13. References ..28

4

1. Abbreviations

bp base pairs
°C degree Celsius
cDNA complementary deoxyribonucleic acid
dNTP deoxynucleotide triphosphate
μl microlitres
μM micromolar
ml millilitres
NTC non-template control
PCR polymerase chain reaction
PC positive control
RNA ribonucleic acid
RT reverse transcription
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

2. Purpose

Whole genome sequencing of SARS-CoV-2 for detecting and characterizing viral
pathogens in clinical samples, supporting infection control, viral epidemiology and
characterizing evolutionary viral responses to vaccines and treatments.

3. Principal of the assay

Viral RNA is transcribed and amplified by a multiplexed set of primers which
generate a pool of 1200bp tiled amplicons. After PCR, samples are barcoded with
the Oxford Nanopore Rapid Barcoding Kit. The Rapid Barcoding Kit using a
transposase which simultaneously cleaves template molecules and attaches one of
12 unique barcoded tags to the cleaved ends. Barcoded samples are pooled, and
Rapid Sequencing Adapters are then added to the tagged ends. Samples are
sequenced on MinION device.

Flow diagram SARS-CoV-2 whole genome sequencing using Oxford MinION
Nanopore

5

4. Material

Isolated SARS-CoV-2 RNA from swab material

5. Pre-analytics

5.1 RNA isolation and quantification

Nucleic acid extraction using the QIAamp Viral RNA Mini Kit (protocols – according
to the instruction manual)

6

Whole genome sequencing is performed on samples which were tested SARS-CoV-
2 positive by RT- qPCR. Ct value of viral RNA input should be between 20-30. If Ct
is between 12-15, then dilute the sample 100-fold in water, if between 15-18 then
dilute 10-fold in water. This will reduce the likelihood of PCR-inhibition. It is good
practice to carry a negative control (e.g. water) through the entire process from
cDNA preparation to sequencing.

Frozen, archived RNA is thawed in a cooling rack on a PCR workstation.

6. Equipment

 PCR thermo cycler
 Gel electrophoresis system
 Invitrogen™ Qubit™ 4 Fluorometer
 Invitrogen™ DynaMag™-2 Magnet
 MinION Mk1B Oxfore Nanopore
 PC like i7-10700KF / 64GB RAM / 1TB SSD
 Vortexer
 Tabletop centrifuge
 PCR workstation
 Pipettes set (P1000, P100, P10)

7. Reagent and Consumables
 LunaScript® RT SuperMix Kit (NEB, cat# E3010)
 SuperScript IV (Thermo Fisher Scientific, cat# 18090050)
 dNTP mix, 10mM each (Thermo Fisher Scientific, cat# R0192)
 RNase OUT (Thermo Fisher Scientific, cat# 10777019)
 Random Hexamers 50µM (Thermo Fisher Scientific, cat# N8080127)
 Agencourt Ampure XP Beads (Beckman Coulter, cat # A63880/A63881)
 dsDNA BR assay kit (Thermo Fisher Scientific, cat# Q32850)
 Nuclease Free water (Thermo Fisher Scientific, cat# AM9916)
 Q5 Hot Start High Fidelity Polymerase (NEB, cat# M0493S)
 Absoluter Ethanol (AppliChem, cat# A1613,2500PE)
 Rapid Barcoding kit (Oxford Nanopore Technologies, cat# SQK-RBK004)
 Flongle Sequencing Expansion (Oxford Nanopore Technologies, cat#

EXP-FSE001)
 Flow Cell Priming Kit (Oxford Nanopore Technologies, cat# EXP-FLP002)
 SpotON Flow Cell R9.4.1 (Oxford Nanopore Technologies, cat# FLO-

MIN106D)
 Flongle device - flow cell and adapter (Oxford Nanopore Technologies,

cat# ADP-FLG001 and cat# FLO-FLG001

7

 Qubit assay tubes (Thermo Fisher Scientific, cat# Q32856)
 1,5ml Eppendorf Safe-Lock (Eppendorf, cat# 0030120086)
 0.2ml PCR tubes
 Disposable filter tips

8. Primers

PCR- POOL 1

Primer Name Sequence Start Pool Length Tm
SARSCoV_1200_1_LEFT ACCAACCAACTTTCGATCTCTTGT 30 1 24 60.69
SARSCoV_1200_1_RIGHT GGTTGCATTCATTTGGTGACGC 1205 1 22 61.49
SARSCoV_1200_3_LEFT GGCTTGAAGAGAAGTTTAAGGAAGGT 2153 1 26 61.19
SARSCoV_1200_3_RIGHT GATTGTCCTCACTGCCGTCTTG 3257 1 22 61.5
SARSCoV_1200_5_LEFT ACCTACTAAAAAGGCTGGTGGC 4167 1 22 60.55
SARSCoV_1200_5_RIGHT AGCATCTTGTAGAGCAGGTGGA 5359 1 22 61.16
SARSCoV_1200_7_LEFT ACCTGGTGTATACGTTGTCTTTGG 6283 1 24 60.8
SARSCoV_1200_7_RIGHT GCTGAAATCGGGGCCATTTGTA 7401 1 22 61.53
SARSCoV_1200_9_LEFT AGAAGTTACTGGCGATAGTTGTAATAACT 8253 1 29 60.59
SARSCoV_1200_9_RIGHT TGCTGATATGTCCAAAGCACCA 9400 1 22 60.29
SARSCoV_1200_11_LEFT AGACACCTAAGTATAAGTTTGTTCGCA 10343 1 27 60.74
SARSCoV_1200_11_RIGHT GCCCACATGGAAATGGCTTGAT 11469 1 22 61.8
SARSCoV_1200_13_LEFT ACCTCTTACAACAGCAGCCAAAC 12450 1 23 61.55
SARSCoV_1200_13_RIGHT CGTCCTTTTCTTGGAAGCGACA 13621 1 22 61.38
SARSCoV_1200_15_LEFT TTTTAAGGAATTACTTGTGTATGCTGCT 14540 1 28 60.06
SARSCoV_1200_15_RIGHT ACACACAACAGCATCGTCAGAG 15735 1 22 61.12
SARSCoV_1200_17_LEFT TCAAGCTTTTTGCAGCAGAAACG 16624 1 23 61.28
SARSCoV_1200_17_RIGHT CCAAGCAGGGTTACGTGTAAGG 17754 1 22 61.19
SARSCoV_1200_19_LEFT GGCACATGGCTTTGAGTTGACA 18596 1 22 61.91
SARSCoV_1200_19_RIGHT CCTGTTGTCCATCAAAGTGTCCC 19678 1 23 61.62
SARSCoV_1200_21_LEFT TCTGTAGTTTCTAAGGTTGTCAAAGTGA 20553 1 28 60.58
SARSCoV_1200_21_RIGHT GCAGGGGGTAATTGAGTTCTGG 21642 1 22 60.95
SARSCoV_1200_23_LEFT ACTTTAGAGTCCAACCAACAGAATCT 22511 1 26 60.18
SARSCoV_1200_23_RIGHT TGACTAGCTACACTACGTGCCC 23631 1 22 61.52
SARSCoV_1200_25_LEFT TGCTGCTACTAAAATGTCAGAGTGT 24633 1 25 60.51
SARSCoV_1200_25_RIGHT CATTTCCAGCAAAGCCAAAGCC 25790 1 22 61.45
SARSCoV_1200_27_LEFT TGGATCACCGGTGGAATTGCTA 26744 1 22 61.75
SARSCoV_1200_27_RIGHT TGTTCGTTTAGGCGTGACAAGT 27894 1 22 60.74
SARSCoV_1200_29_LEFT TGAGGGAGCCTTGAATACACCA 28677 1 22 61.1
SARSCoV_1200_29_RIGHT TAGGCAGCTCTCCCTAGCATTG 29790 1 22 61.61

PCR- POOL 2

Primer Name Sequence Start Pool Length Tm
SARSCoV_1200_2_LEFT CCATAATCAAGACTATTCAACCAAGGGT 1100 2 28 61.27
SARSCoV_1200_2_RIGHT ACAGGTGACAATTTGTCCACCG 2266 2 22 61.33
SARSCoV_1200_4_LEFT GGAATTTGGTGCCACTTCTGCT 3144 2 22 61.66

8

SARSCoV_1200_4_RIGHT CCTGACCCGGGTAAGTGGTTAT 4262 2 22 61.49
SARSCoV_1200_6_LEFT ACTTCTATTAAATGGGCAGATAACAACTG 5257 2 29 60.18
SARSCoV_1200_6_RIGHT GATTATCCATTCCCTGCGCGTC 6380 2 22 61.75
SARSCoV_1200_8_LEFT CAATCATGCAATTGTTTTTCAGCTATTTTG 7298 2 30 60.39
SARSCoV_1200_8_RIGHT TGACTTTTTGCTACCTGCGCAT 8385 2 22 61.39
SARSCoV_1200_10_LEFT TTTACCAGGAGTTTTCTGTGGTGT 9303 2 24 60.32
SARSCoV_1200_10_RIGHT TGGGCCTCATAGCACATTGGTA 10451 2 22 61.5
SARSCoV_1200_12_LEFT ATGGTGCTAGGAGAGTGTGGAC 11372 2 22 61.48
SARSCoV_1200_12_RIGHT GGATTTCCCACAATGCTGATGC 12560 2 22 60.48
SARSCoV_1200_14_LEFT ACAGGCACTAGTACTGATGTCGT 13509 2 23 61.12
SARSCoV_1200_14_RIGHT GTGCAGCTACTGAAAAGCACGT 14641 2 22 61.94
SARSCoV_1200_16_LEFT ACAACACAGACTTTATGAGTGTCTCT 15608 2 26 60.18
SARSCoV_1200_16_RIGHT CTCTGTCAGACAGCACTTCACG 16720 2 22 61.17
SARSCoV_1200_18_LEFT GCACATAAAGACAAATCAGCTCAATGC 17622 2 27 62.03
SARSCoV_1200_18_RIGHT TGTCTGAAGCAGTGGAAAAGCA 18706 2 22 60.68
SARSCoV_1200_20_LEFT ACAATTTGATACTTATAACCTCTGGAACAC 19574 2 30 60.15
SARSCoV_1200_20_RIGHT GATTAGGCATAGCAACACCCGG 20698 2 22 61.39
SARSCoV_1200_22_LEFT GTGATGTTCTTGTTAACAACTAAACGAACA 21532 2 30 61.44
SARSCoV_1200_22_RIGHT AACAGATGCAAATCTGGTGGCG 22612 2 22 62.03
SARSCoV_1200_24_LEFT GCTGAACATGTCAACAACTCATATGA 23518 2 26 60.13
SARSCoV_1200_24_RIGHT ATGAGGTGCTGACTGAGGGAAG 24736 2 22 61.74
SARSCoV_1200_26_LEFT GCCTTGAAGCCCCTTTTCTCTA 25690 2 22 60.29
SARSCoV_1200_26_RIGHT AATGACCACATGGAACGCGTAC 26857 2 22 61.5
SARSCoV_1200_28_LEFT TTTGTGCTTTTTAGCCTTTCTGCT 27784 2 24 60.14
SARSCoV_1200_28_RIGHT GTTTGGCCTTGTTGTTGTTGGC 29007 2 22 61.82

*Positions relative to MN908947/SARS-CoV-2/Wuhan-Hu-1

 Dilute this primer pool 1:10 in molecular grade water, to generate 10µM primer
stocks. It is recommended that multiple aliquots of each primer pool are made
to in case of degradation or contamination.

 If you have ordered each primer independently and need to generate primer
pool stocks: add 5µL of each primer from Pool 1 to a 1.5mL Eppendorf labeled
“Pool 1 (100µM)” and each primer from Pool 2 to a 1.5mL Eppendorf labelled
“Pool 2 (100µM)”. These are your 100µM stocks of each primer pool.

 Primers should be diluted and pooled in the mastermix cabinet which should
be cleaned with decontamination wipes and UV sterilized before and after use.

9. Assay procedure

9.1.cDNA synthesis
cDNA synthesis using NEB LunaScript® RT SuperMix Kit is recommended since its
protocol is quick and convenient. For samples with high Ct value (between 28-30),

9

cDNA synthesis using Thermo Fisher kit is recommended for greater efficiency and
coverage.

 cDNA synthesis using NEB LunaScript® RT SuperMix Kit (E3010)
- Mix components briefly and spin down if necessary.
- Prepare cDNA synthesis reaction as described below:

Component 1 reaction
Template RNA 8 μL
LunaScript RT SuperMix (5X) 2 μL
Total 10 μL

- Incubate reactions in a thermocycler with the following steps:

CYCLE STEP TEMPERATURE TIME CYCLES
Primer Annealing 25°C 2 minutes

1cDNA Synthesis 55°C 20 minutes
Heat Inactivation 95°C 1 minute
Hold 4°C

 cDNA synthesis using Thermo Fisher
- Add the following components to a 0.2mL RNase-free tube on ice

Component 1 reaction
50µM random hexamers 1 μL
10mM dNTPs mix (10mM each) 1 μL
Template RNA 11 μL
Total 13 μL

- Anneal primers: Gently mix by pipetting and pulse spin down the tube.
Incubate at 65°C for 5 minutes.

- Snap cool in a prechilled metal rack or on ice for 2 minutes.
- Prepare the mastermix in the mastermix cabinet as follow

Component 1 reaction
SuperScript IV Buffer 4 μL
100mM DTT 1 μL
RNaseOUT RNase Inhibitor 1 μL
SSIV Reverse Transcriptase 1 μL
Total 20 μL

- Add 20μL of the mastermix to the annealed template RNA (13µL) in a sample
addition cabinet.

- Gently mix by pipetting and pulse spin the tube.

10

- Incubate the reaction in a preheated PCR machine:

CYCLE STEP TEMPERATURE TIME CYCLES
Reverse transcribe RNA 42°C 50 minutes

1Inactivate enzyme 70°C 10 minutes
Hold 4°C

Safe stopping point: Next for PCR amplification: Store at –20°C for up to one week,
or –70°C for long term storage.

9.2 Multiplex PCR
- Thaw reagents: Thaw, mix, and briefly centrifuge each component before use.
- A PCR master mix for each pool should be made up in the master mix cabinet

and aliquoted into 0.2mL PCR strip tubes. Tubes should be wiped down when
entering and leaving the master mix cabinet.

- Prepare reaction mix for each sample as follow

Component Pool 1 Pool 2
5X Q5 Reaction Buffer 5 µL 5 μL
10 mM dNTPs 0.5 µL 0.5 µL
Q5 Hot Start DNA Polymerase 0.25 µL 0.25 µL
Primer pool 1 or pool 2 (10µM) 1.1 µL 1.1 µL
Nuclease-free water 15.9 µL 15.9 µL
Total 22.5 µL 22.5 µL

- Add 2.5 µL cDNA to each tube and mix well by pipetting
- Pulse centrifuge the tubes to collect the contents at the bottom of the tube
- Set up the following program on a thermal cycler (3-step protocol)

Cycle step Temperature Time Cycles
Initial denaturation 98°C 30 seconds 1
Denaturation
Annealing and extension

98°C
65°C

15 seconds
5minutes

30

Hold 4°C Indefinite 1
NOTE: Cycle number should be 25 for Ct 18-21 up to a maximum of 35
cycles for Ct 35. Typically use 30 cycles.

9.3 Pooling
- At this stage, care should be taken with amplified PCR products. Only open

tubes in a designated post-PCR workspace with equipment that is separate
from areas where primers and master mixes are handled.

- Label a 1.5mL Eppendorf tube for each sample and combine the two pools
the PCR reaction as follows:

11

Component Volume
Pool 1 PCR reaction 25 µL
Pool 2 PCR reaction 25 µL
Total 50 µL

9.4 Analyzing on agarose gel electrophoresis
- Using 5µL of pooled PCR to check the appearance of 1200bp bands on 1.1%

agarose gel

9.5 Purification by AMPure XP Bead
- Resuspend the AMPure XP beads by vortexing.
- Prepare fresh 80% ethanol in Nuclease-free water.
- Prepare 10mM Tris-HCl pH 7.5-8.0 with 50mM NaCl buffer.
- To the entire pooled sample (45μL - 50μL), add 25μL of resuspended AMPure

XP beads, and mix by flicking the tube.
- Incubate on a Hula mixer (rotator mixer) for 5 minutes at RT.
- Briefly spin down the sample and pellet on a magnet. Keep the tube on the

magnet, and pipette off the supernatant.
- Keep the tube on the magnet and wash the beads with 200μl of freshly

prepared 80% ethanol without disturbing the pellet. Remove the ethanol using
a pipette and discard.

- Repeat the previous step.
- Spin down and place the tube back on the magnet. Pipette off any residual

ethanol and briefly allow to dry.
- Remove the tube from the magnetic rack and resuspend pellet in 22μl of

10mM Tris-HCl pH 7.5-8.0 with 50mM NaCl. Incubate for 2 minutes at RT.
- Pellet the beads on a magnet until the eluate is clear and colorless.
- Remove and retain 20μL of eluate into a clean 1.5ml Eppendorf DNA LoBind

tube.

9.6 Quantify the pool using Qubit dsDNA Assay
- Set up the required number 0.5mL Qubit assay tubes for standards and

samples. Note: the standards require two tubes.
- Label tube lids. Do not label the side of the tube as this could interfere with

the sample read.
- Prepare the Qubit working solution by diluting the Qubit dsDNA HS reagent

1:200 in Qubit dsDNA HS buffer. Use a clean plastic tube each time you
prepare Qubit working solution. Do not mix the working solution in a glass
container.

- Prepare sufficient Qubit working solution to accommodate all standards and
samples.

- Add 190uL of Qubit working solution to each of the tubes used for standards.
- Add 10uL of each qubit standard to the appropriate tube, mix by vertexing 2-3

seconds.

12

- Add 197uL of Qubit working solution to each assay tube.
- Add 3uL each sample to the assay tubes, then mix by vertexing 2-3 seconds.

The final volume in each tube should be 200uL.
- Allow all tubes to incubate at room temperature for 2 minutes.
- Sample concentration can now be measured on the Qubit Fluorometer.

9.7 Normalization
- Label a 0.2ml PCR tube for each sample
- Adjust the amount of DNA in the tube to be 100ng total per sample in 7.5µL

molecular grade water. For example:

DNA conc. by
Qubit (ng/ul)

Volume (ul) to
have 100 ng

Molecular grade
water (ul)

Total volume
(ul)

100 1 6.5 7.5

- Use 1ul of the NTC, even if there is no detectable DNA in the PCR reaction

9.8 Barcoding and Concentrate Library
 Using Rapid Barcoding Kit (SQK-RBK004)
- Set up on ice the following reaction for each sample

Component Volume
DNA amplicons from step 7 (100ng) 7.5 µL
Fragmentation Mix RB 01-12 (one for each
sample)

2.5 µL

Total 10 µL

- Mix gently be flicking the tube, and spin down
- Incubate at 30°C for 1 minute and then at 80°C for 1 minute and briefly cool

on ice.
- Pool all barcoded samples (max 12 samples), noting the total volume.
- Resuspend the AMPure XP beads by vortexing.
- Prepare fresh 80% ethanol in Nuclease-free water.
- Prepare 10mM Tris-HCl pH 7.5-8.0 with 50mM NaCl buffer.
- To the entire pooled barcoded sample, add an equal volume of resuspended

AMPure XP beads, and mix by flicking the tube.
- Incubate on a Hula mixer (rotator mixer) for 5 minutes at RT.
- Spin down the sample and pellet on a magnet. Keep the tube on the magnet,

and pipette off the supernatant.
- Keep the tube on the magnet and wash the beads with 200μl of freshly

prepared 80% ethanol without disturbing the pellet. Remove the ethanol using
a pipette and discard.

- Repeat the previous step.
- Spin down and place the tube back on the magnet. Pipette off any residual

80% ethanol and briefly allow to dry.

13

- Remove the tube from the magnetic rack and resuspend pellet in 12μl of
10mM Tris-HCl pH 7.5-8.0 with 50mM NaCl. Incubate for 2 minutes at RT.

- Pellet the beads on a magnet until the eluate is clear and colourless.
- Remove and retain 10μl of eluate into a clean 1.5ml Eppendorf DNA LoBind

tube.

Safe stopping point: Store at –20°C for up to one week if not planning to load
on MinION.

- Add 1μl of RAP to 10μl of barcoded DNA (Total 11µL pool).
- Mix gently by flicking the tube, and spin down.
- Incubate the reaction for 5 minutes at RT.
- The prepared library is used for loading to the MinION flow cell. Store the

library on ice until ready to load.

 Using Rapid Barcoding Kit 96 (SQK-RBK110.96)
- The Rapid Barcoding Kit 96 contains sufficient reagents for 12 pooled

libraries using 24 barcodes (6 pooled libraries using 48 barcodes and 3
pooled libraries using 96 barcodes).

- Please refer to use all reagents in Rapid Barcoding Kit 96 (SQK-RBK110.96)
including Rapid Adapter F (RAP-F), SPRI beads (SPRI), Sequencing Buffer
II (SBII), Loading Beads II (LBII), Elution Buffer (EB), Flush Tether (FLT) and
Flush Buffer (FB)

- Briefly centrifuge and place the barcodes plate on ice
- In 0.2 ml thin-walled PCR tubes or a PCR plate 96, mix the following. The

Rapid Barcodes can be transferred using a multichannel pipette:

Component Volume
DNA amplicons from step 9.7 (100ng) 7.5 µL
Rapid Barcodes (RB01-96, one for each
sample)

2.5 µL

Total 10 µL
- Mix well by pipetting. Seal the plate and spin down in a centrifuge.
- Incubate the tubes or plate at 30°C for 1 minutes and then at 80°C for 1

minutes. Briefly put the tubes or plate on ice to cool.
- Pool all barcoded samples in your desired ratio, noting the total volume.
- Resuspend the SPRI beads by vortexing.
- To the entire pooled barcoded sample from Step 7, add an equal volume of

resuspended SPRI beads and mix by flicking the tube.
- Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
- Prepare at least 3 ml of fresh 80% ethanol in nuclease-free water.
- Spin down the sample and pellet on a magnet. Keep the tube on the magnet,

and pipette off the supernatant.
- Keep the tube on the magnet and wash the beads with 1.5 ml of freshly-

prepared 80% ethanol without disturbing the pellet. Remove the ethanol using
a pipette and discard.

14

- Repeat the previous step.Briefly spin down and place the tube back on the
magnet. Pipette off any residual ethanol. Allow to dry for 30 seconds, but do
not dry the pellet to the point of cracking.

- Remove the tube from the magnetic rack and resuspend the pellet in 15 μl
Elution Buffer (EB). Incubate for 10 minutes at room temperature.

- Pellet the beads on a magnet until the eluate is clear and colourless.
- Remove and retain 15 μl of eluate into a clean 1.5 ml Eppendorf DNA LoBind

tube.
- Remove and retain the eluate which contains the DNA library in a clean 1.5 ml

Eppendorf DNA LoBind tube
- Dispose of the pelleted beads
- Transfer 11 μl of the sample into a clean 1.5 ml Eppendorf DNA LoBind tube.
- Add 1 μl of Rapid Adapter F (RAP F) to 11 μl of barcoded DNA
- Mix gently by flicking the tube, and spin down.
- Incubate the reaction for 5 minutes at room temperature.

9.9 Load to MinION and sequence

 Priming and loading the SpotON Flow Cell R9.4.1
- Set up the MinION flow cell and host computer, including MinKNOW software.
- Open the MinKNOW GUI from the desktop icon and establish a local

connection.
- Inset a flow cell into MinION.
- Click “Check Flow Cells” at the bottom of the screen then click “Start test.”

Check the number of active pores available. When the check is complete, it is
reported in the Notification panel. Check to ensure it has enough pores for a
good sequencing run (warranty for flow cells: 800 nanopores or above
checked within 5 days of receipt).

- Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT)
and one tube of Flush Buffer (FB) or Sequencing Buffer II (SBII), Loading
Beads II (LBII) or Loading Solution (LS, if using), Flush Tether (FLT) and
Flush Buffer (FB) if using Rapid Barcoding Kit 96 (SQK-RBK110.96) at room
temperature

- Thoroughly mix the Sequencing Buffer (SQB) and Flush Buffer (FB) tubes by
vortexing. Spin down the Flush Tether (FLT) tube, and return to ice.

- To prepare the flow cell priming mix, add 30 μl of thawed and mixed Flush
Tether (FLT) to 1.17 ml of thawed and mixed Flush Buffer (FB), and mix by
vortexing at room temperature.Open the lid of the nanopore sequencing
device and slide the flow cell's priming port cover clockwise 90 degrees.

- Set a P1000 pipette to 200uL, insert the tip into the priming port, turn the
wheel until the dial shows 220-230uL, or until you can see a small volume of
buffer entering the pipette tip. Do not remove more than this.

- Visually check that there is continuous buffer from the priming port across the
sensor array.

15

- Load 800uL of the priming mix into the flow cell via the priming port, avoiding
the introduction of air bubbles. Wait for 5 minutes.

- Thoroughly mix the contents of the Loading Beads (LB) by pipetting.
- Prepare library for loading as follows:

With library prepared by Rapid Barcoding Kit (cat# SQK-RBK004)

Component Volume (uL)
Sequencing Buffer (SQB) 34
Loading Beads (LB) mixed immediately before use 25.5
Nuclease free water 4.5
DNA Library (11µL pool) 11
Total 75

With library prepared by Rapid Barcoding Kit 96 (SQK-RBK110.96)

Component Volume (uL)
Sequencing Buffer II (SBII) 37.5
Loading Beads II (LBII) mixed immediately before use 25.5
DNA Library (12 µL pool) 11
Total 75

- Gently lift the SpotON sample port cover to make the SpotON sample port
accessible.

- Load 200µL of the priming mix into the flow cell via the priming port (not
theSpotON sample port), avoiding the introduction of air bubbles.

- Mix the prepared library gently by pipetting up and down just prior to loading.
- Add 75uL of sample to the flow cell via the SpotON sample port in a dropwise

fashion. Ensure each drop flows into the port before adding the next.
- Gently replace the SpotON sample port cover, making sure the bung enters

the SpotON port, close the priming port and replace the MinION lid.
- Start the sequencing run using the MinKNOW software.

 Priming and Loading the Flongle flow cell
- Set up the MinION flow cell and host computer, including MinKNOW software.
- Open the MinKNOW GUI from the desktop icon and establish a local

connection.
- Place the Flongle adapter into the MinION.
- The adapter should sit evenly and flat on the MinION Mk1B or GridION

platform. This ensures the flow cell assembly is flat during the next stage.
- Place the flow cell into the Flongle adapter and press the flow cell down until

you hear a click. Users should NOT touch the reverse side of the Flongle flow
cell array or the contact pads on the Flongle adapter.

16

- The flow cell should sit evenly and flat inside the adapter, to avoid any
bubbles forming inside the fluidic compartments.

- Click “Check Flow Cells” at the bottom of the screen then click “Start test.”
Check the number of active pores available. When the check is complete, it is
reported in the Notification panel. Check to ensure it has enough pores for a
good sequencing run (warranty for flow cells: 50 nanopores or above checked
within 5 days of receipt).

- Thaw the Sequencing Buffer II (SQBII), Loading Beads II (LBII), Flush Tether
(FLT) and Flush Buffer (FB) at room temperature before placing the tubes on
ice.

- Thoroughly mix by vortexing, spin down and return to ice.
- In a fresh 1.5ml Eppendorf DNA LoBind tube, mix 117μl of Flush Buffer (FB)

with 3μl of Flush Tether (FLT) and mix by pipetting.
- Peel back the seal tab from the Flongle flow cell, up to a point where the

sample port is exposed.

Lift up the seal tab; Pull the seal tab to open access to the sample port; Hold the seal tab
open by using adhesive on the tab to stick to the MinION Mk 1B lid

- To prime your flow cell with the mix of Flush Buffer (FB) and Flush Tether
(FLT) that was prepared earlier, ensure that there is no air gap in the sample
port or the pipette tip. Place the P200 pipette tip inside the sample port and
slowly dispense the priming fluid into the Flongle flow cell. To avoid flushing
the flow cell too vigorously, load the priming mix by twisting the pipette
plunger down.

17

- Vortex the vial of Loading Beads II (LBII). Note that the beads settle quickly,
so immediately prepare the Sequencing Mix in a fresh 1.5ml Eppendorf DNA
LoBind tube for loading the Flongle, as follows:

Component Volume (uL)
Sequencing Buffer II (SBII) 15
Loading Beads II (LBII) 10
DNA Library 5
Total 30

- To add the Sequencing Mix to the flow cell, ensure that there is no air gap in
the sample port or the pipette tip. Place the P100 tip inside the sample port
and slowly dispense the Sequencing Mix into the flow cell by twisting the
pipette plunger down.

- Seal the Flongle flow cell using the adhesive on the seal tab.
- Replace the sequencing platform lid.

10. Ending the experiment

When to STOP:

Depending on the variation in coverage of each amplicon, generally, you will need
greater than 20,000 reads per sample to confidently assemble and call variants. This
can typically be achieved on a MinION flow cell in four to six hours when running 12
samples using Fast Base Calling.

After your sequencing experiment is complete, if you would like to reuse the flow cell,
please follow the Wash Kit instructions, and store the washed flow cell at 2-8°C, OR

Follow the returns procedure by washing out the flow cell ready to send back to
Oxford Nanopore.

11. Basic bioinformatic for data analysis

18

MinKNOW, the operating software that drives nanopore sequencing devices, carries
out several core tasks, including data acquisition, real-time analysis and feedback,
local basecalling, and data streaming. MinKNOW produces FAST5 (HDF5) files
and/or FASTQ files, based on preferences. FAST5 files contain raw signal data that
can be used for basecalling. In our work, we obtain raw data in FASTQ format that
contain nucleotide sequence data and their corresponding quality scores. The entire
data analysis can be carried in 5 steps starting from raw data acquisition from
MinKNOW.

First step of the analysis is basecalling which is usually completed by MinKNOW
software. This step includes barcoding/demultiplexing, adapter trimming and
alignment. For the rest of the analysis, you need to use bioinformatics workflows on
a Linux/Mac computer. You are advised to watch some bioinformatics lectures on
YouTube to get a good insight on these workflows. One such easy to follow lecture
series from Dr. Simon Cockell of University of Newcastle, UK can be viewed at

https://www.youtube.com/c/SimonCockell/videos

In addition, keeping in view of your upcoming training you are also suggested to
watch one recorded video on Nanopore data analysis. This lecture focusses on how
to analyse raw data obtained from MinKNOW software using bioinformatics pipelines.

https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-
nanopore-reads-consensus-genomes-using

Besides the above, some basic knowledge in Linux, Miniconda, Docker and GitHub
are essential. For editing the code, Visual studio code is also a nice to have software
that be easily installed on any OS. Linux and Mac operating systems are ideal for
bioinformatics. However, if your PC has Windows 10 as OS, you could still install
Linux and share all your data between the two operating systems without having to
reboot the PC.

If you are a beginner in bioinformatics without any prior knowledge in Linux or
any programming language, you can still do the data analysis, as the
bioinformatics workflows for Nanopore are meant to cater the needs of
biologists who wants to do sequence analysis by themselves.

11.1 Linux

Linux is an open-source operating system that is very secure, fast and reliable. Linux
is most preferred for bioinformatics workflow as it can easily handle large datasets.

https://www.youtube.com/c/SimonCockell/videos
https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-nanopore-reads-consensus-genomes-using
https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-nanopore-reads-consensus-genomes-using

19

Installation of Linux on Windows 10 PC or laptop

On a Windows 10 PC or laptop, Linux can be installed as WSL-2 (Windows-
subsystem for Linux, version 2). WSL is freely downloadable from Microsoft store on
Windows 10 PC.

IMPORTANT: System should be x64 systems: Windows Version 1903 or higher,
with Build 18362 or higher.

The information on Windows build can be found at
Start > Settings > System > About (under windows specifications)

More details on installation of WSL-2 can be read at the following URL

https://docs.microsoft.com/en-us/windows/wsl/install-win10#manual-installation-
steps

Users are advised to follow step-by-step instructions under the section “Install WSL
& update to WSL-2” at the above website. When asked for a username, you may
give a short name or initials, but without any spaces. When you type your password,
you may not see cursor moving, but Linux stores your password. You need to
confirm the password by typing again. For beginners in Linux, either Ubuntu 18.04 or
20.04 is ideal as there is lot of reading material on internet. WSL does not have a
graphical user interface (GUI) and hence some basic commands are essential for
easy manoeuvre at the terminal prompt. A very good intro to Linux can be found at

https://ubuntu.com/tutorials/command-line-for-beginners#1-overview

There is lot of literature on Ubuntu on internet. For a start, following websites are
useful from bioinformatics perspective.

1. http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-
operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/

2. https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html#gsc.ta
b=0

11.2 Conda and Miniconda

Conda is an open-source package management and environment management
system that runs on any OS. It has been created for Python programs, although it
can package and distribute software for any language. Conda as a package
manager helps you find and install packages. You will learn more about this package
manager as you use it regularly.

Miniconda is a free minimal installer for conda. It is a small, bootstrap version of
Anaconda that includes only conda, Python, the packages they depend on, and a
small number of other useful packages, including pip, zlib and a few others. To know
more about Conda / miniconda, please refer to the following website.

https://docs.conda.io/projects/conda/en/latest/

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://ubuntu.com/tutorials/command-line-for-beginners%231-overview
http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/
http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/
https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html%23gsc.tab=0
https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html%23gsc.tab=0
https://docs.conda.io/projects/conda/en/latest/

20

Install Miniconda on WSL

At Ubuntu terminal, you need to type the following commands at $ prompt

$ wget https://repo.continuum.io/miniconda/ Miniconda3-py39_4.9.2-Linux-
x86_64.sh

Click Enter button. The above command will download the miniconda from internet.

$ bash Miniconda3-py39_4.9.2-Linux-x86_64.sh

The above command will install the miniconda application on your Linux.

If your system is Mac,

$ wget https://repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-
x86_64.sh

Followed by

$ bash Miniconda3-py39_4.9.2-MacOSX-x86_64.sh

11.3 Docker

Docker is an open-source software platform to build, deploy or execute applications
by using containers. As the name indicates, containerization isolate applications with
each container having a separate environment at the same time sharing the
underlying OS kernel. Docker provides a good platform to run multiple applications at
the same time, each needing its own environment. Containerization is very similar to
virtual machines, but unlike VMs, containers are faster and use less system
resources. Each Docker container has an image file to create a run-time
environment for the supposed application.

Installing Docker

Docker can be easily installed on WSL2 based windows by following instructions as
mentioned in the below URL

https://docs.docker.com/docker-for-windows/wsl/

11.4 GitHub

GitHub is an Open-source Community where people around the globe work together
on Open-source projects and make contributions. GitHub is also a code hosting
platform for collaboration and version control. Importantly, GitHub is a repository for
bioinformatics pipelines, and in our work, we use GitHub to download Nanopore
workflows.

For more information and basic commands on GitHub, please refer to

https://guides.github.com/introduction/git-handbook/

file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/%20Miniconda3-py39_4.9.2-Linux-x86_64.sh
file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/%20Miniconda3-py39_4.9.2-Linux-x86_64.sh
file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-x86_64.sh
file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-x86_64.sh
https://docs.docker.com/docker-for-windows/wsl/
https://guides.github.com/introduction/git-handbook/

21

11.5 Visual Studio Code

This editor can be downloaded freely from https://code.visualstudio.com
depending on the type of OS. This is very useful software to edit the code, besides
providing an excellent platform to integrate linux terminal, Git and docker.

12. Nanopore MinION data analysis
In our program, we use NGS pipelines developed by Artic Network project. These
workflows can be modified to suit the analysis of Ebola, SARS-CoV-2, Influenza
viruses etc. For further details on ARTIC Network, please refer to

https://artic.network/1-about.html

12.1Quality control of sequencing data using RAMPART

For running RAMPART, you need to have Docker installed on your PC. For further
details on this pipeline, you are advised to read the information at the following
website

https://hub.docker.com/r/ontresearch/artic_rampart

For using RAMPART, at Ubuntu terminal, you must navigate to the directory that
contained the FASTQ files collected from MinKNOW. Then type in the following
commands at the $ prompt

$ docker pull ontresearch/artic_rampart

$ docker run -it -e LOCAL_USER_ID=`id -u $USER` --mount
type=bind,source="$(pwd)",target=/data -p 3000:3000 -p 3001:3001
ontresearch/artic_rampart:latest

Open a browser and type localhost:3000 to visualize the results. Typically,
successful run should return a picture similar to the one below

https://code.visualstudio.com
https://artic.network/1-about.html
https://hub.docker.com/r/ontresearch/artic_rampart

22

This docker image is developed and updated regularly by ONT (Oxford Nanopore
Technologies) Research. Care should be taken that the latest image is being pulled
from docker hub.

The above pipeline will process sequence reads that were basecalled by MinKNOW.
The program will look for. FASTQ files in the specified path, de-multiplex the reads,
looking for any barcodes that were used when creating the sequencing library.
Subsequently, the reads are mapped to a set of reference genomes. Finally the
aligned reads are visualised in the browser using https://localhost:3000.

De-multiplexing is carried by porechop. This program is an adapter trimming and
demultiplexing package. If the demultiplexing is already done by Guppy, then this
step can be skipped. For more details on porechop, the original source code and
information can be accessed at https://github.com/rrwick/Porechop

The second step is reference mapping, and this is done by minimap2. This program
performs a pairwise alignment for a given FASTA sequence and corresponding
reference. Additional information on minimap2 program could be found at
https://github.com/lh3/minimap2.

The entire RAMPART could be carried in real-time as and when reads are obtained
from MinKNOW program. However, this analysis is quiet demanding for PC and
requires high-end configuration with high RAM (>64gb) additional GPU (graphics
processing unit)

12.2 Field-Bioinformatics
This pipeline will be carried out on the FASTQ files obtained after demultiplexing.
This includes read filtering, primer trimming, amplicon coverage normalization,
variant calling and consensus building.

Installing the pipeline
(Adapted from https://github.com/artic-network/fieldbioinformatics)

1. Downloading the source:

$ git clone https://github.com/artic-network/fieldbioinformatics
$ cd fieldbioinformatics

2. Install dependencies:

The artic pipeline has several software dependencies, and these could be installed
by executing the below .yml file.

$ conda env create -f environment.yml
$ conda activate artic

3. Install the pipeline:

$ python setup.py install

4. Test the pipeline:

https://localhost:3000
https://github.com/rrwick/Porechop
https://github.com/lh3/minimap2%20
https://github.com/artic-network/fieldbioinformatics

23

First check the pipeline can be called.

$ artic -v

5. Finally, execute the pipeline tests:

$./test-runner.sh medaka

The above workflow runs medaka tool that is specific to analyse Nanopore
sequencing data. To adapt the workflow to the analysis of SARS-CoV-2 NGS add
our primerschemes and the modified script (run1.sh) to the fieldbioinformatics-folder.
Change the in- and output definitions in the script for each run.

The workflow principally includes samtools and minimap2.The SAMtools is an
acronym for sequence alignment/map and this software parses sequences and
returns output in SAM/BAM format. The BAM is binary alignment/map is a
compressed version. This package is used in conjunction with BCFtools to generate
consensus sequence and variant calling. The consensus sequence is stored in fasta
format and variants in a file with .vcf extension.

12.3 High accuracy basecalling with guppy
High accuracy basecalling with guppy needs high computing capacities and should
only be run on computers with additional graphic-card (GPU). System requirements
can be checked here:

https://community.nanoporetech.com/protocols/Guppy-
protocol/v/gpb_2003_v1_revx_14dec2018/guppy-software-overview

You have to have the newest update of your GPU-driver installed, check for updates
either at the nvidia-homepage or under “Software&Updates” in your linux-menu. With
the command below you can see which driver-version you are using.

$ nvidia-smi

Make sure to download a GPU-version of the guppy-software or you can go via the
Oxford Nanopore's deb repository to load the newest version:

1. Add Oxford Nanopore's deb repository to your system (this is to install Oxford
Nanopore Technologies-specific dependency packages):

$ sudo apt-get update

$ sudo apt-get install wget lsb-release

$ export PLATFORM=$(lsb_release -cs)

$ wget -O- https://mirror.oxfordnanoportal.com/apt/ont-repo.pub | sudo apt-key add -

https://community.nanoporetech.com/protocols/Guppy-protocol/v/gpb_2003_v1_revx_14dec2018/guppy-software-overview
https://community.nanoporetech.com/protocols/Guppy-protocol/v/gpb_2003_v1_revx_14dec2018/guppy-software-overview

24

$ echo "deb http://mirror.oxfordnanoportal.com/apt ${PLATFORM}-stable non-free" |
$ sudo tee /etc/apt/sources.list.d/nanoporetech.sources.list

$ sudo apt-get update

2. To install the .deb for Guppy, use the following command:

$ sudo apt update

$ sudo apt install ont-guppy

Type the command below to see if your installation was successful, if it was, you
should see the guppy-manual

$ guppy_bascaller

To run guppy use the following command, change the input and outputpath
according to your data

$ guppy_basecaller –input_path ~/data/fast5_pass/barcode01 –save_path
~/data/fast5/barcode01 –flowcell FLO-MIN106 –kit SQK-RBK004 -x “cuda:0”

The output will be fastq files, which have to go through the fieldbioinformatics-
workfolw to get fasta files.

If you get “[guppy/error] main: GPU mode not available in this build” try to update
guppy with the following commands:

$ sudo apt install guppy

$ sudo apt get-update

12.4 Information on nomenclatures, variants, mutations, outbreaks about
SARS-CoV-2

Nomenclatures

I. GISAID Clades: (e.g. L, V, S, O, G, GH, GR, GV, GRY)

II. NeXTstrain Clades: Major clades: 19A, 19B, and 20A–20I

III. PANGOLIN Lineages: Phylogenetic Assignment of Named Global Outbreak
Lineages

Following are important web links that gives information on:
Global/Country/State/City to local, Circulating variants, New viral lineages, Variants
of interest, under investigation, of concern, Distribution over time and space, No of
mutation accumulating and Much more…….

25

https://cov-lineages.org/resources.html

https://nextstrain.org/ncov/gisaid/global

https://outbreak.info/

To compare between GISAID, Clade, Pangolin and WHO nomenclature check here:
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

12.4.1 GISAID
https://www.gisaid.org/

GISAID is a platform to share data from all influenza viruses and the coronavirus
causing COVID-19. This includes genetic sequence and related clinical and
epidemiological data associated with human viruses, and geographical as well as
species-specific data associated with avian and other animal viruses. Every time you
analyse a new sample you should upload the sequence as quickly as possible to the
platform.

You can single upload one sequence at the time or batch-upload as described below:

https://www.gisaid.org/epiflu-applications/submitting-data-to-epiflutm/

12.4.2 Nextclade and Pangolin to identify the variants and lineages from the
sequences

Nextclade and Pangolin are webtools that identify differences between your
sequence and a reference sequence and assign the sequences to described
variants.

To prepare your data for this you have to merge all fasta files, all barcodes, to one.
You can do this using the cat-command multiple times or the bash-script below.

You will have to modify the script and put the path to your fasta files.

 Nextclade:

https://clades.nextstrain.org/results

https://nextstrain.org/ncov/gisaid/global
https://outbreak.info/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.gisaid.org/
https://clades.nextstrain.org/results

26

Drag the merged fasta file.

Nextclade groups variants into clades defined by specific signature mutations.

18 major clades were defined on 30AUG2021

After dragging the file, nextclade will automatically start to analyse the data and will
show you the results as below.

27

 Pangolin:

Pangolin is similar to Nextclade but uses a different methodology and nomenclature
for variant lineages.

How to use Pangolin? See: https://pangolin.docs.cog-uk.io/

Loading fasta files for analysis: https://pangolin.cog-uk.io/

All pango-lineages: https://cov-lineages.org/lineage_list.html

https://pangolin.docs.cog-uk.io/
https://pangolin.cog-uk.io/
https://cov-lineages.org/lineage_list.html

28

12.5 Phylogeny
For phylogeny you can use a program called MegaX https://megasoftware.net/ which
comes with a graphical user interface. There is a free version which allows all
important steps, for more features you can buy a full version. But MegaX is rather
slow, especially for large numbers of samples.

Alternatively there are some command line tools.

MAFFT https://mafft.cbrc.jp/alignment/software/ is a multiple sequence alignment
program. It can be installed via the command line

$ sudo apt install mafft

To run mafft type:

$ mafft all_barcodes_merged.fasta > all_barcodes_alinged.fasta (input > output)

IQTREE http://www.iqtree.org/ is a phylogeny program. It can be installed via the
command line.

$ sudo apt install iqtree

To run type:

$ iqtree -s all_barcodes_alinged.fasta -bb 1000

“-bb 100” is to set the ultrafast bootstrap (UFBoot) feature to 1000 replicates which
will give more unbiased values.

To visualize your phylogenetic analysis you can load the treefile of the iqtree-output
to the ITOL-website: https://itol.embl.de/upload.cgi

A tree will automatically be generated and can then be modified.

13. References

https://itol.embl.de/upload.cgi

29

1. Geoghegan JL, Ren X, Storey M, Hadfield J, Jelley L, Jefferies S, Sherwood J,
Paine S, Huang S, Douglas J, Mendes FK, Sporle A, Baker MG, Murdoch DR,
French N, Simpson CR, Welch D, Drummond AJ, Holmes EC, Duchêne S, de Ligt
J. Genomic epidemiology reveals transmission patterns and dynamics of SARS-
CoV-2 in Aotearoa New Zealand. Nat Commun. 2020 Dec 11;11(1):6351. doi:
10.1038/s41467-020-20235-8. PMID: 33311501.

2. Nikki Freed, Olin Silander 2020. nCoV-2019 sequencing protocol (RAPID
barcoding, 1200bp amplicon). https://www.protocols.io/view/ncov-2019-
sequencing-protocol-rapid-barcoding-1200-bgggjttw?version_warning=no&step=1

3. Nikki E Freed, Markéta Vlková, Muhammad B Faisal, Olin K Silander, Rapid and
inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled
amplicons and Oxford Nanopore Rapid Barcoding, Biology Methods and Protocols,
Volume 5, Issue 1, 2020, bpaa014, https://doi.org/10.1093/biomethods/bpaa014

4. https://store.nanoporetech.com/eu/rapid-barcoding-kit.html

5. https://help.geneious.com/hc/en-us/articles/360045070991-Assembly-of-SARS-
CoV-2-genomes-from-tiled-amplicon-Illumina-sequencing-using-Geneious-Prime

6. Nanopore Protocol, Rapid Barcoding Kit 96 (SQK-RBK110.96) Version:
RBK_9126_v110_revD_24Mar2021

7. https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html

https://www.protocols.io/view/ncov-2019-sequencing-protocol-rapid-barcoding-1200-bgggjttw?version_warning=no&step=1
https://www.protocols.io/view/ncov-2019-sequencing-protocol-rapid-barcoding-1200-bgggjttw?version_warning=no&step=1
https://doi.org/10.1093/biomethods/bpaa014
https://store.nanoporetech.com/eu/rapid-barcoding-kit.html
https://help.geneious.com/hc/en-us/articles/360045070991-Assembly-of-SARS-CoV-2-genomes-from-tiled-amplicon-Illumina-sequencing-using-Geneious-Prime
https://help.geneious.com/hc/en-us/articles/360045070991-Assembly-of-SARS-CoV-2-genomes-from-tiled-amplicon-Illumina-sequencing-using-Geneious-Prime

30

Bacterial Whole Genome Sequencing
using long-read/Hybrid Assembly

AG Velavan
Institute of Tropical Medicine

Universität Tübingen
Wilhelmstr 27

72074 Tuebingen
Germany

Protocol updates

Version Update summary

1.0 Complete draft protocol

31

INDEX:

1 Abbreviations ...32

2 Purpose ... 32

3 Principal of the assay .. 32

4 Material .. 32

5 Pre-analytics ...32

6 Equipment ...33

7 Reagent and Consumables .. 33

8 Assay procedure ...34

8.1 Library preparation for Illumina ... 34

8.1.1 Tagment Genomic DNA ...34

8.1.2 Post Tagmentation Cleanup .. 35

8.1.3 Amplify Tagmented DNA .. 36

8.1.4 Clean Up Libraries ..37

8.1.5 Check libraries Quantity and Quality .. 38

8.1.6 Normalize libraries ... 38

8.1.7 Denature and Dilute Library ...38

8.2 Library preparation for ONT ..39

8.2.1 Using Rapid Barcoding Kit (SQK-RBK004) ... 39

8.2.2 Using Rapid Barcoding Kit 96 (SQK-RBK110.96) .. 40

9 Data analysis .. 43

9.1 Ilumina data ... 47

9.2 Nanopore data ...48

9.3 Hybrid assembly by Unicycler https://github.com/rrwick/Unicycler.git .. 48

9.4 Long read only assembly by Flye https://github.com/fenderglass/Flye 49

9.5 Quality check of the output from Unicycler by CheckM
(https://github.com/Ecogenomics/CheckM) .. 50

9.6 Search for anti-microbial resistant gene ... 50

9.6.1 By AMR finder (https://github.com/ncbi/amr/wiki) .. 50

9.6.2 By Abricate (https://github.com/tseemann/abricate) ..50

9.7 Core-genome alignment and Analysis (https://harvest.readthedocs.io/en/latest/) 51

10 References ..51

32

1 Abbreviations

bp base pairs
°C degree Celsius
DNA deoxyribonucleic acid
dNTP deoxynucleotide triphosphate
μl microliters
μM micromolar
ml Milliliters
NTC non-template control
PCR polymerase chain reaction
PC positive control
ONT Oxford Nanopore Technology
RNA ribonucleic acid
RT reverse transcription

2 Purpose

Complete bacterial genome is archived for downstream analysis including species

identification, phylogeny, resistance and virulence determinants, capsular types, plasmids,

insertion sequences, phage regions,… by using bioinformatic tools.

3 Principal of the assay

A same bacterial DNA isolate is used to obtain both short reads (Illumina reads) and long

reads (ONT reads). Short reads set is created by Illumina DNA Prep Kit which uses an

enzyme to fragment the DNA while Rapid Barcoding kit and MinION is used to make long

reads. Hybrid assembly is performed on both long and short reads. To archive a high-

quality, complete genome, a deep (>100×) long-read set and a medium (~50×) short-read

set is recommended. Sequencing can be multiplexed by using barcode per sample.

4 Material

Isolated genomic bacterial DNA

5 Pre-analytics

DNA isolation and quantification

33

Nucleic acid extraction using the Monarch® Genomic DNA Purification Kit (protocols –

according to the instruction manual)

DNA Purity: This protocol is optimized for DNA with 260/280 absorbance ratio values of

1.8–2.0, which indicates a pure DNA sample.

For Illumina library preparation: adjust the amount of DNA in the tube to be 200ng total per

sample in 30 µL molecular grade water. For ONT Library preparation: adjust the amount of

DNA in the tube to be 100ng total per sample in 7.5 µL molecular grade water. Using the

same DNA for both short-read and long-read sequencing is required to avoid hybrid

sequencing mismatch.

6 Equipment

 PCR thermo cycler

 Gel electrophoresis system

 Invitrogen™ Qubit™ 4 Fluorometer

 Invitrogen™ DynaMag™-2 Magnet

 MinION Mk1B Oxford Nanopore

 PC like i7-10700KF / 64GB RAM / 1TB SSD

 Vortex

 Tabletop centrifuge

 PCR workstation

 Pipettes set (P1000, P100, P10)

7 Reagent and Consumables

 Illumina® DNA Prep, (M) Tagmentation (24 Samples or 96 Samples) (Illumina, cat#

20018704 or #20018705)

 IDT® for Illumina® DNA/RNA UD Indexes Set A, Tagmentation (96 Indexes, 96

Samples) (Illumina, cat# 20027213)

 MiSeq Reagent Kit v3 (600-cycle) (Illumina, cat #MS-102-3003)

 Agencourt Ampure XP Beads (Beckman Coulter, cat# A63880/A63881)

 dsDNA BR assay kit (Thermo Fisher Scientific, cat# Q32850)

 Nuclease Free water (Thermo Fisher Scientific, cat# AM9916)

 Absoluter Ethanol (AppliChem, cat# A1613,2500PE)

34

 Rapid Barcoding kit (Oxford Nanopore Technologies, cat# SQK-RBK004)

 SpotON Flow Cell R9.4.1 (Oxford Nanopore Technologies, cat# FLO-MIN106D)

 Qubit assay tubes (Thermo Fisher Scientific, cat# Q32856)

 1,5ml Eppendorf Safe-Lock (Eppendorf, cat# 0030120086)

 0.2 ml PCR tubes

 Disposable filter tips

 96-well PCR plate

8 Assay procedure

8.1 Library preparation for Illumina

8.1.1 Tagment Genomic DNA
This step uses the Bead-Linked Transposomes (BLT) to tagment DNA, which is a process

that fragments and tags the DNA with adapter sequences.

 Prepare the following consumables:

Item Storage Instructions
BLT 2°C to 8° C Bring to room temperature. Vortex to mix. Do not

centrifuge before pipetting.
TB1 -25°C to -15°C Bring to room temperature. Vortex to mix.

 Save the following TAG program on the thermal cycler: 55°C for 15 minutes and

Hold at 10°C

 Procedure

- Add 30μl input DNA (200ng) to each well of a 96-well PCR plate

- Vortex BLT (yellow cap) vigorously for 10 seconds to resuspend. Repeat as necessary.

- Combine the following volumes to prepare the tagmentation master mix. Multiply each

volume by the number of samples being processed. Reagent overage is included in the

volume to ensure accurate pipetting.

BLT 11 μL
TB1 11 μL

- Vortex the tagmentation master mix thoroughly to resuspend.

- Divide the tagmentation master mix volume equally into an 8-tube strip.

- Using a 200 μL multichannel pipette, transfer 20 μL tagmentation master mix to each

well of the plate containing a sample. Use fresh tips for each sample column.

- Discard the 8-tube strip after the tagmentation master mix has been dispensed.

35

- Pipette each sample 10 times to resuspend.

- Seal the plate, place on the preprogrammed thermal cycler, and run the TAG program.

8.1.2 Post Tagmentation Cleanup
This step washes the adapter-tagged DNA on the BLT before PCR amplification.

 Preparation

Item Storage Instructions

TSB 15°C to 30°C If precipitates are observed, heat at 37°C for 10 minutes,
and then vortex until precipitates are dissolved. Use at room
temperature

TWB 15°C to 30°C Use at room temperature.

 Save the following PTC program on the thermal cycler: 37°C for 15 minutes and hold at

10°C

 Procedure

- Add 10 μL TSB to the tagmentation reaction.

- Slowly pipette each well 10 times to resuspend the beads.

- Seal the plate, place on the preprogrammed thermal cycler, and run the PTC program.

- Place the plate on the magnetic stand and wait until liquid is clear (~3 minutes).

- Using a multichannel pipette, remove and discard supernatant.

- Wash two times as follows:

a) Remove the sample plate from the magnetic stand and use a deliberately slow

pipetting technique to add 100 μL TWB directly onto the beads. A deliberately slow

pipetting technique minimizes the potential of TWB foaming to avoid incorrect

volume aspiration and incomplete mixing.

b) Pipette slowly until beads are fully resuspended.

c) Place the plate on the magnetic stand and wait until the liquid is clear (~3 minutes).

d) Using a multichannel pipette, remove and discard supernatant.

- Remove the plate from the magnetic stand and use a deliberately slow pipetting

technique to add 100 μL TWB directly onto the beads.

- Pipette each well slowly to resuspend the beads.

- Seal the plate and place on the magnetic stand until the liquid is clear (~3 minutes).

Keep on the magnetic stand until step 4 of the Procedure section in Amplify Tagmented

DNA.

- The TWB remains in the wells to prevent overdrying of the beads.

36

8.1.3 Amplify Tagmented DNA
This step amplifies the tagmented DNA using a limited-cycle PCR program. The PCR step

adds Index 1 (i7) adapters, Index 2 (i5) adapters, and sequences required for sequencing

cluster generation.

 Preparation

Item Storage Instructions

EPM -25°C to -15°C Thaw on ice. Invert to mix, then briefly centrifuge.

Index Adapters -25°C to -15°C Thaw at room temperature. Spin briefly before use.

 Save the following BLT PCR program on a thermal cycler using the appropriate

number of PCR cycles, indicated in the table below.

CYCLE STEP TEMPERATURE TIME CYCLES
68°C 3 minutes
98°C 3 minutes

Amplification
98°C 45 seconds

562°C 30 seconds
68°C 2 minutes

Extension 68°C 1 minutes
Hold 4°C

 Procedure

- Combine the following volumes to prepare the PCR master mix. Multiply each volume by

the number of samples being processed. Reagent overage is included in the volume to

ensure accurate pipetting.

EPM 22 μL
Nuclease-free water 22 μL

- Vortex, and then centrifuge the PCR master mix at 280 × g for 10 seconds.

- With the plate on the magnetic stand, use a 200 μL multichannel pipette to remove and

discard supernatant. Foam that remains on the well walls does not adversely affect the

library.

- Remove from the magnet.

- Immediately add 40 μL PCR master mix directly onto the beads in each sample well.

- Immediately pipette to mix until the beads are fully resuspended. Alternatively, seal the

plate and use a plate shaker at 1600 rpm for 1 minute.

- Seal the sample plate and centrifuge at 280 × g for 3 seconds.

37

- Add the appropriate index adapters to each sample. 5μl i7 adapter 5μl i5 adapter 96 plex

(dual index) 96-well

- Using a pipette set to 40 μL, pipette 10 times to mix. Alternatively, seal the plate and use

a plate shaker at 1600 rpm for 1 minute.

- Seal the plate and then centrifuge at 280 × g for 30 seconds.

- Place on the thermal cycler and run the BLT PCR program.

SAFE STOPPING POINT: If you are stopping, store at 2°C to 8°C for up to 3 days.

8.1.4 Clean Up Libraries
This step uses double-sided bead purification procedure to purify the amplified libraries.

Item Storage Instructions
SPB 2°C to 8°C Let stand at room temperature for 30 minutes. Vortex and

invert to mix.
RSB -25°C to -15°C Thaw and bring to room temperature. Vortex to mix

Prepare fresh 80% EtOH from absolute ethanol

 Procedure

- Centrifuge at 280 × g for 1 minute to collect contents at the bottom of the well.

- Place the plate on the magnetic stand and wait until the liquid is clear (~5 minutes).

- Transfer 45 μL supernatant from each well of the PCR plate to the corresponding well of

a new midi plate.

- Vortex and invert SPB multiple times to resuspend.

- For standard DNA input, perform the following steps.

a) Add 40 μL nuclease-free water to each well containing supernatant.

b) Add 45 μL SPB to each well containing supernatant.

c) Pipette each well 10 times to mix. Alternatively, seal the plate and use a plate

shaker at 1600 rpm for 1 minute.

d) Seal the plate and incubate at room temperature for 5 minutes.

e) Place on the magnetic stand and wait until the liquid is clear (~5 minutes).

f) During incubation, thoroughly vortex the SPB (undiluted stock tube), and then add

15μl to each well of a new midi plate.

g) Transfer 125 μL supernatant from each well of the first plate into the corresponding

well of the second plate (containing 15 μL undiluted SPB).

h) Pipette each well in the second plate 10 times to mix. Alternatively, seal the plate

and use a plate shaker at 1600 rpm for 1 minute.

i) Discard the first plate.

38

- Incubate the sealed midi plate at room temperature for 5 minutes.

- Place on the magnetic stand and wait until the liquid is clear (~5 minutes).

- Without disturbing the beads, remove and discard supernatant.

- Wash two times as follows.

a) With the plate on the magnetic stand, add 200 μL fresh 80% EtOH without mixing.

b) Incubate for 30 seconds.

c) Without disturbing the beads, remove and discard supernatant.

- Use a 20 μL pipette to remove and discard residual EtOH.

- Air-dry on the magnetic stand for 5 minutes.

- Remove from the magnetic stand.

- Add 32 μL RSB to the beads.

- Pipette to resuspend.

- Incubate at room temperature for 2 minutes.

- Place the plate on the magnetic stand and wait until the liquid is clear (~2 minutes).

- Transfer 30 μL supernatant to a new 96-well PCR plate.

SAFE STOPPING POINT: If you are stopping, seal the plate, and store at -25°C to -15°C

for up to 30 days.

8.1.5 Check libraries Quantity and Quality

 Using Qubit dsDNA High Sensitivity assay to measure libraries concentration

 Using QIAxcel to measure Average Lib size

8.1.6 Normalize libraries

 All libraries are diluted to 4mM/μL using 10mM Tris Ph.8

 Pool all the libraries into one tube: 5 μL of each sample -> 4nM pooled library.

8.1.7 Denature and Dilute Library
 Prepare the following consumables

 Denature a 4 nM Library

- Combine 5 μL of 4nM pooled library and 5μl of 0.2 N NaOH in a microcentrifuge tube.

Vortex briefly and then centrifuge at 280 × g for 1 minute.

39

- Incubate at room temperature for 5 minutes.

 Dilute denatured library to 20pM library: Add 990μl prechilled HT1 to 10 μL

denatured library. The result is 1 mL of a 20pM library.

 Dilute 20pM library to 10pM library: Combine 300μl of 20pM library and 300μl of

Prechilled HT1 in a microcentrifuge tube. Invert to mix and then pulse centrifuge.

MiSeq Reagent Kit v2 Dilute the denatured PhiX control to 12.5pM, which produces an

optimal cluster density using v2 reagents. In this protocol, we use 9pM denatured PhiX as

control.

 Dilute PhiX to 4 nM: Combine 2 μL of 10 nM PhiX library and 3 μL of 10 mM Tris-Cl,

pH 8.5 with 0.1% Tween20 in a microcentrifuge tube.

 Denature PhiX Control

- Combine 5μl of 4nM PhiX library and 5μl of 0.2N NaOH in a microcentrifuge tube.

- Vortex briefly to mix, Centrifuge at 280 × g for 1 minute.

- Incubate at room temperature for 5 minutes.

 Dilute Denatured PhiX to 20 pM: Add 990μl prechilled HT1 to 10 μL the denatured

PhiX library. The result is 1 mL of a 20pM PhiX library. Invert to mix.

 Dilute Denatured PhiX to 9pM: Add 300 µL of 20pM PhiX to 300 µL of Prechilled

HT1. The result is 600μl of a 9pM PhiX library.

 Combine Library and PhiX Control

- Combine 6 μL of denatured PhiX control and 594μl denatured library.

- Set aside on ice until you are ready to load it onto the reagent cartridge.

8.2 Library preparation for ONT

8.2.1 Using Rapid Barcoding Kit (SQK-RBK004)

 Set up on ice the following reaction for each sample

Component Volume
DNA amplicons from step 7 (100ng) 7.5 µL
Fragmentation Mix RB 01-12 (one for each
sample)

2.5 µL

Total 10 µL

 Mix gently be flicking the tube, and spin down

 Incubate at 30°C for 1 minute and then at 80°C for 1 minute and briefly cool on ice.

 Pool all barcoded samples (max 12 samples), noting the total volume.

 Resuspend the AMPure XP beads by vortexing.

 Prepare fresh 80% ethanol in Nuclease-free water.

40

 Prepare 10mM Tris-HCl pH 7.5-8.0 with 50 mM NaCl buffer.

 To the entire pooled barcoded sample, add an equal volume of resuspended

AMPure XP beads, and mix by flicking the tube.

 Incubate on a Hula mixer (rotator mixer) for 5 minutes at RT.

 Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and

pipette off the supernatant.

 Keep the tube on the magnet and wash the beads with 200 μL of freshly prepared

80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and

discard.

 Repeat the previous step.

 Spin down and place the tube back on the magnet. Pipette off any residual 80%

ethanol and briefly allow to dry.

 Remove the tube from the magnetic rack and resuspend pellet in 12 μL of 10mM

Tris-HCl pH 7.5-8.0 with 50mM NaCl. Incubate for 2 minutes at RT.

 Pellet the beads on a magnet until the eluate is clear and colourless.

 Remove and retain 10μl of eluate into a clean 1.5 mL Eppendorf DNA LoBind tube.

Safe stopping point: Store at –20°C for up to one week if not planning to load on MinION.

 Add 1 μL of RAP to 10 μL of barcoded DNA (Total 11µL pool).

 Mix gently by flicking the tube, and spin down.

 Incubate the reaction for 5 minutes at RT.

 The prepared library is used for loading to the MinION flow cell. Store the library on

ice until ready to load.

8.2.2 Using Rapid Barcoding Kit 96 (SQK-RBK110.96)

 The Rapid Barcoding Kit 96 contains sufficient reagents for 12 pooled libraries

using 24 barcodes (6 pooled libraries using 48 barcodes and 3 pooled libraries

using 96 barcodes).

 Please refer to use all reagents in Rapid Barcoding Kit 96 (SQK-RBK110.96)

including Rapid Adapter F (RAP-F), SPRI beads (SPRI), Sequencing Buffer II (SBII),

Loading Beads II (LBII), Elution Buffer (EB), Flush Tether (FLT) and Flush Buffer

(FB)

 Briefly centrifuge and place the barcodes plate on ice

 In 0.2 ml thin-walled PCR tubes or a PCR plate 96, mix the following. The Rapid

Barcodes can be transferred using a multichannel pipette:

41

Component Volume
DNA amplicons from step 9.7 (100ng) 7.5 µL
Rapid Barcodes (RB01-96, one for each sample) 2.5 µL
Total 9 µL

 Mix well by pipetting. Seal the plate and spin down in a centrifuge.

 Incubate the tubes or plate at 30°C for 1 minutes and then at 80°C for 1 minutes.

Briefly put the tubes or plate on ice to cool.

 Pool all barcoded samples in your desired ratio, noting the total volume.

 Resuspend the SPRI beads by vortexing.

 To the entire pooled barcoded sample from Step 7, add an equal volume of

resuspended SPRI beads and mix by flicking the tube.

 Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.

 Prepare at least 3 ml of fresh 80% ethanol in nuclease-free water.

 Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and

pipette off the supernatant.

 Keep the tube on the magnet and wash the beads with 1.5 ml of freshly-prepared

80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and

discard.

 Repeat the previous step. Briefly spin down and place the tube back on the magnet.

Pipette off any residual ethanol. Allow to dry for 30 seconds, but do not dry the

pellet to the point of cracking.

 Remove the tube from the magnetic rack and resuspend the pellet in 15 μl Elution

Buffer (EB). Incubate for 10 minutes at room temperature.

 Pellet the beads on a magnet until the eluate is clear and colourless.

 Remove and retain 15 μL of eluate into a clean 1.5 mL Eppendorf DNA LoBind tube.

 Remove and retain the eluate which contains the DNA library in a clean 1.5 mL

Eppendorf DNA LoBind tube

 Dispose of the pelleted beads

 Transfer 11 μL of the sample into a clean 1.5 mL Eppendorf DNA LoBind tube.

 Add 1 μL of Rapid Adapter F (RAP F) to 11 μL of barcoded DNA

 Mix gently by flicking the tube, and spin down.

 Incubate the reaction for 5 minutes at room temperature.

8.2.3 Load to MinION and sequence

 Priming and loading the SpotON Flow Cell R9.4.1

42

- Set up the MinION flow cell and host computer, including MinKNOW software.

- Open the MinKNOW GUI from the desktop icon and establish a local connection.

- Inset a flow cell into MinION.

- Click “Check Flow Cells” at the bottom of the screen then click “Start test.” Check the

number of active pores available. When the check is complete, it is reported in the

Notification panel. Check to ensure it has enough pores for a good sequencing run

(warranty for flow cells: 800 nanopores or above checked within 5 days of receipt).

- Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT) and one

tube of Flush Buffer (FB) or Sequencing Buffer II (SBII), Loading Beads II (LBII) or Loading

Solution (LS, if using), Flush Tether (FLT) and Flush Buffer (FB) if using Rapid Barcoding

Kit 96 (SQK-RBK110.96) at room temperature

- Thoroughly mix the Sequencing Buffer (SQB) and Flush Buffer (FB) tubes by vortexing.

Spin down the Flush Tether (FLT) tube, and return to ice.

- To prepare the flow cell priming mix, add 30 μL of thawed and mixed Flush Tether (FLT)

to 1.17 mL of thawed and mixed Flush Buffer (FB), and mix by vortexing at room

temperature. Open the lid of the nanopore sequencing device and slide the flow cell's

priming port cover clockwise 90 degrees.

- Set a P1000 pipette to 200 uL, insert the tip into the priming port, turn the wheel until the

dial shows 220-230 uL, or until you can see a small volume of buffer entering the pipette

tip. Do not remove more than this.

- Visually check that there is continuous buffer from the priming port across the sensor

array.

- Load 800 uL of the priming mix into the flow cell via the priming port, avoiding the

introduction of air bubbles. Wait for 5 minutes.

- Thoroughly mix the contents of the Loading Beads (LB) by pipetting.

- Prepare library for loading as follows:

With library prepared by Rapid Barcoding Kit (cat# SQK-RBK004)

Component Volume (uL)
Sequencing Buffer (SQB) 34
Loading Beads (LB) mixed immediately before use 25.5
Nuclease free water 4.5
DNA Library (11µL pool) 11
Total 75

With library prepared by Rapid Barcoding Kit 96 (SQK-RBK110.96)

43

Component Volume (uL)
Sequencing Buffer II (SBII) 37.5
Loading Beads II (LBII) mixed immediately before use 25.5
DNA Library (12 µL pool) 11
Total 75

- Gently lift the SpotON sample port cover to make the SpotON sample port accessible.

- Load 200 µL of the priming mix into the flow cell via the priming port (not the SpotON

sample port), avoiding the introduction of air bubbles.

- Mix the prepared library gently by pipetting up and down just prior to loading.

- Add 75 uL of sample to the flow cell via the SpotON sample port in a dropwise fashion.

Ensure each drop flows into the port before adding the next.

- Gently replace the SpotON sample port cover, making sure the bung enters the SpotON

port, close the priming port and replace the MinION lid.

- Start the sequencing run using the MinKNOW software.

When to STOP:

Depending on the variation in coverage of each barcoded samples, generally, a deep

(>100×) long-read set and a medium (~50×) short-read set is recommended for an

accurate hybrid assembly. If long reads only assembly is performed, more depth is better

up to ~200×. Coverage can be rough estimated as follow: C = sequenced bases/ genome

size.

After your sequencing experiment is complete, if you would like to reuse the flow cell,

please follow the Wash Kit instructions, and store the washed flow cell at 2-8°C

OR

Follow the returns procedure by washing out the flow cell ready to send back to Oxford

Nanopore.

9 Data analysis

1. Basic bioinformatic for data analysis

MinKNOW, the operating software that drives nanopore sequencing devices, carries out
several core tasks, including data acquisition, real-time analysis and feedback, local
basecalling, and data streaming. MinKNOW produces FAST5 (HDF5) files and/or FASTQ
files, based on preferences. FAST5 files contain raw signal data that can be used for

44

basecalling. In our work, we obtain raw data in FASTQ format that contain nucleotide
sequence data and their corresponding quality scores. The entire data analysis can be
carried in 5 steps starting from raw data acquisition from MinKNOW.

First step of the analysis is basecalling which is usually completed by MinKNOW software.
This step includes barcoding/demultiplexing, adapter trimming and alignment. For the rest
of the analysis, you need to use bioinformatics workflows on a Linux/Mac computer. You
are advised to watch some bioinformatics lectures on YouTube to get a good insight on
these workflows. One such easy to follow lecture series from Dr. Simon Cockell of
University of Newcastle, UK can be viewed at

https://www.youtube.com/c/SimonCockell/videos

In addition, keeping in view of your upcoming training you are also suggested to watch one
recorded video on Nanopore data analysis. This lecture focusses on how to analyse raw
data obtained from MinKNOW software using bioinformatics pipelines.

https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-
nanopore-reads-consensus-genomes-using

Besides the above, some basic knowledge in Linux, Miniconda, Docker and GitHub are
essential. For editing the code, Visual studio code is also a nice to have software that be
easily installed on any OS. Linux and Mac operating systems are ideal for bioinformatics.
However, if your PC has Windows 10 as OS, you could still install Linux and share all your
data between the two operating systems without having to reboot the PC.

If you are a beginner in bioinformatics without any prior knowledge in Linux or any
programming language, you can still do the data analysis, as the bioinformatics
workflows for Nanopore are meant to cater the needs of biologists who wants to do
sequence analysis by themselves.

11.1 Linux

Linux is an open-source operating system that is very secure, fast and reliable. Linux is
most preferred for bioinformatics workflow as it can easily handle large datasets.

Installation of Linux on Windows 10 PC or laptop

On a Windows 10 PC or laptop, Linux can be installed as WSL-2 (Windows-subsystem for
Linux, version 2). WSL is freely downloadable from Microsoft store on Windows 10 PC.

https://www.youtube.com/c/SimonCockell/videos
https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-nanopore-reads-consensus-genomes-using
https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-nanopore-reads-consensus-genomes-using

45

IMPORTANT: System should be x64 systems: Windows Version 1903 or higher, with
Build 18362 or higher.

The information on Windows build can be found at
Start > Settings > System > About (under windows specifications)

More details on installation of WSL-2 can be read at the following URL

https://docs.microsoft.com/en-us/windows/wsl/install-win10#manual-installation-steps

Users are advised to follow step-by-step instructions under the section “Install WSL &
update to WSL-2” at the above website. When asked for a username, you may give a
short name or initials, but without any spaces. When you type your password, you may not
see cursor moving, but Linux stores your password. You need to confirm the password by
typing again. For beginners in Linux, either Ubuntu 18.04 or 20.04 is ideal as there is lot of
reading material on internet. WSL does not have a graphical user interface (GUI) and
hence some basic commands are essential for easy manoeuvre at the terminal prompt. A
very good intro to Linux can be found at

https://ubuntu.com/tutorials/command-line-for-beginners#1-overview

There is lot of literature on Ubuntu on internet. For a start, following websites are useful
from bioinformatics perspective.

1. http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-
operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/

2. https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html#gsc.tab=0

11.2 Conda and Miniconda

Conda is an open-source package management and environment management system
that runs on any OS. It has been created for Python programs, although it can package
and distribute software for any language. Conda as a package manager helps you find and
install packages. You will learn more about this package manager as you use it regularly.

Miniconda is a free minimal installer for conda. It is a small, bootstrap version of Anaconda
that includes only conda, Python, the packages they depend on, and a small number of
other useful packages, including pip, zlib and a few others. To know more about Conda /
miniconda, please refer to the following website.

https://docs.conda.io/projects/conda/en/latest/

Install Miniconda on WSL

At Ubuntu terminal, you need to type the following commands at $ prompt

$ wget https://repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh

Click Enter button. The above command will download the miniconda from internet.

$ bash Miniconda3-py39_4.9.2-Linux-x86_64.sh

The above command will install the miniconda application on your Linux.

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://ubuntu.com/tutorials/command-line-for-beginners%231-overview
http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/
http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/
https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html%23gsc.tab=0
https://docs.conda.io/projects/conda/en/latest/
file:///D:/VG_Care%20Projects/Dr.Sy_Project_AMR_Vgcare_Seq_project/wget%20https:/repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh

46

If your system is Mac,

$ wget https://repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-x86_64.sh

Followed by

$ bash Miniconda3-py39_4.9.2-MacOSX-x86_64.sh

11.3 Docker

Docker is an open-source software platform to build, deploy or execute applications by
using containers. As the name indicates, containerization isolate applications with each
container having a separate environment at the same time sharing the underlying OS
kernel. Docker provides a good platform to run multiple applications at the same time,
each needing its own environment. Containerization is very similar to virtual machines, but
unlike VMs, containers are faster and use less system resources. Each Docker container
has an image file to create a run-time environment for the supposed application.

Installing Docker

Docker can be easily installed on WSL2 based windows by following instructions as
mentioned in the below URL

https://docs.docker.com/docker-for-windows/wsl/

11.4 GitHub

GitHub is an Open-source Community where people around the globe work together on
Open-source projects and make contributions. GitHub is also a code hosting platform for
collaboration and version control. Importantly, GitHub is a repository for bioinformatics
pipelines, and in our work, we use GitHub to download Nanopore workflows.

For more information and basic commands on GitHub, please refer to

https://guides.github.com/introduction/git-handbook/

11.5 Visual Studio Code

This editor can be downloaded freely from https://code.visualstudio.com depending on
the type of OS. This is very useful software to edit the code, besides providing an excellent
platform to integrate linux terminal, Git and docker.

Analysis Plan:

file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-x86_64.sh
https://docs.docker.com/docker-for-windows/wsl/
https://guides.github.com/introduction/git-handbook/
https://code.visualstudio.com

47

9.1 Ilumina data

48

 The raw data come from Ilumina should be compressed in the form of paired end

data.

For example: R1.fq.gz and R2.fq.gz (for one single sequence)

 Using fastp to preprocess raw data from Illumina

(https://github.com/OpenGene/fastp)

 Install: There are many ways to install, but I suggest installing with conda (it

might not be the latest version but still can be used without any problems).

$ conda install -c bioconda fastp

 Usage:

$ fastp -i in.R1.fq.gz -I in.R2.fq.gz -o out.R1.fq.gz -O out.R2.fq.gz

(The input and output files can be named as you want)

9.2 Nanopore data
 Using fast5 files (raw data from nanopore) as input for high accuracy basecalling

(with flow cell and kit name) by guppy (GPU – version)

 Usage:

$ guppy_basecaller –compress_fastq –i ~/data/fast5_pass/barcode01 –s

~/data/fast5/barcode01 –flowcell FLO-MIN106 –kit SQK-RBK004 -x “cuda:0”

-compress_fastq: compress the fastq output (in gz form)

-i: input path, the directory of the input files

-s: save path, the directory where the output will be saved

-flowcell: name of the flow cell

-kit: name of the kit

-x: GPU using. It may occur error sometimes. Try “cuda:auto” instead of “cuda:0”

9.3 Hybrid assembly by Unicycler https://github.com/rrwick/Unicycler.git
 Requirement: try to install all the dependency package before install Unicycler

 Linux or macOS

 Python 3.4 or later

 C++ compiler with C++14 support:

o GCC 4.9.1 or later

o Clang 3.5 or later

o ICC also works (though I don't know the minimum required version

number)

 setuptools (only required for installation of Unicycler)

https://github.com/rrwick/Unicycler.git
https://www.python.org/
https://gcc.gnu.org/
http://clang.llvm.org/
https://software.intel.com/en-us/c-compilers
https://packaging.python.org/installing/

49

 For short-read or hybrid assembly:

o SPAdes v3.14.0 or later (spades.py) (can be installed by conda)

 For long-read or hybrid assembly:

o Racon (racon)

 For rotating circular contigs:

o BLAST+ (makeblastdb and tblastn)

 Install:

$ git clone https://github.com/rrwick/Unicycler.git

$ cd Unicycler

$ python3 setup.py install

 If the last command complains about permissions, you may need to run it

with “sudo”.

 Usage:

 Move to the directory where the inputs are saved. All the input files should be

put in the same folder for easier process.

$ unicycler -1 short_reads_1.fastq.gz -2 short_reads_2.fastq.gz -l

long_reads.fastq.gz -o output_dir

-1, -2: Ilumina data input (after qc by fastp)

-l:nanopore data input (after hac by guppy)

-o: directory where the output files will be saved

9.4 Long read only assembly by Flye https://github.com/fenderglass/Flye
 Building Requirements

 Python 2.7 or 3.5+ (with setuptools package installed)

 C++ compiler with C++11 support (GCC 4.8+ / Clang 3.3+ / Apple Clang 5.0+)

 GNU make

 Git

 Core OS development headers (zlib, ...)

 Install: using conda

$ conda install flye

 Usage: flye (--pacbio-raw | --pacbio-corr | --pacbio-hifi | --nano-raw |

--nano-corr | --nano-hq) file1 [file_2 ...]

--out-dir PATH

http://bioinf.spbau.ru/spades
https://github.com/lbcb-sci/racon
https://www.ncbi.nlm.nih.gov/books/NBK279690/
https://github.com/rrwick/Unicycler.git
https://github.com/fenderglass/Flye

50

9.5 Quality check of the output from Unicycler by CheckM
(https://github.com/Ecogenomics/CheckM)

 Install: using conda

$ conda create -n checkm python=3.9 (#create a new environment called “checkm”)

$ conda activate checkm (# activate checkm environment just created)

$ conda install numpy matplotlib pysam (# install dependency package)

$ conda install hmmer prodigal pplacer (# install dependency package)

$ pip3 install checkm-genome

 Reference data:

 CheckM relies on a number of precalculated data files which can be

downloaded from https://data.ace.uq.edu.au/public/CheckM_databases/ and

must be decompress into a directory. The path to this data can be set using

the CHECKM_DATA_PATH environmental variable, e.g.:

$ export CHECKM_DATA_PATH=/path/to/my_checkm_data

 Alternatively, the following command can be run to inform CheckM of where

the files have been placed:

$ checkm data setRoot <checkm_data_dir>

 Usage: we use the “Lineage-specific Workflow”

$ checkm lineage_wf <input folder> <output folder>

(All genomes to be analyzed must reside in a single <input> directory)

9.6 Search for anti-microbial resistant gene
9.6.1 By AMR finder (https://github.com/ncbi/amr/wiki)

 Install: using conda

 Activate an environment you just created (e.g., the checkm environment

above or you can create new environment)

 $ conda install -y -c bioconda -c conda-forge ncbi-amrfinderplus

 Usage:

 Change directory to the folder contains sequence that need to search (e.g.,

<input folder> above)

 $ amrfinder -n <nucleotide_fasta>

9.6.2 By Abricate (https://github.com/tseemann/abricate)

https://github.com/Ecogenomics/CheckM
https://data.ace.uq.edu.au/public/CheckM_databases/
https://github.com/ncbi/amr/wiki
https://github.com/tseemann/abricate

51

Mass screening of contigs for antimicrobial resistance or virulence genes. It comes

bundled with multiple databases: NCBI, CARD, ARG-ANNOT, Resfinder, MEGARES,

EcOH, PlasmidFinder, Ecoli_VF and VFDB.

 Install: using conda

$ conda install -c conda-forge -c bioconda -c defaults abricate

$ abricate --check

$ abricate –list

 Usage:

$ abricate assembly.fa

$ abricate assembly.fa.gz

$ abricate assembly.gbk

$ abricate assembly.gbk.bz2

The default database is ncbi. You can choose a different database using the --db option

9.7 Core-genome alignment and Analysis (https://harvest.readthedocs.io/en/latest/)
Harvest is a suite of core-genome alignment and visualization tools for quickly analyzing

thousands of intraspecific microbial genomes, including variant calls, recombination

detection, and phylogenetic trees.

https://github.com/katholt/Kleborate/wiki

On going

10 References

1. Illumina DNA Prep Reference Guide Document # 1000000025416 v09 June 2020

2. https://store.nanoporetech.com/eu/rapid-barcoding-kit.html
3. Nanopore Protocol, Rapid Barcoding Kit 96 (SQK-RBK110.96) Version:

RBK_9126_v110_revD_24Mar2021

4. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies

from short and long sequencing reads. PLoS Comput Biol 2017.

Important: Video links on AMR:

https://en.wikipedia.org/wiki/Carbapenem-resistant_enterobacteriaceae

https://harvest.readthedocs.io/en/latest/
https://store.nanoporetech.com/eu/rapid-barcoding-kit.html
https://en.wikipedia.org/wiki/Carbapenem-resistant_enterobacteriaceae

52

53

Gut microbiota profiling with full-length 16S rRNA
using MinION Oxford Nanopore Technology (ONT)

and
Metagenomic and Metabolomic analysis

AG Velavan
Institute of Tropical Medicine

Universität Tübingen
Wilhelmstr 27

72074 Tuebingen
Germany

Protocol updates

Version Update summary

1.0 Complete draft protocol

54

INDEX

1. Abbreviations .. 56
2. Purpose ...56
3. Principal of the assay ..56
4. Material ..56
5. Pre-analytics .. 56
6. Equipment .. 57
7. Reagent and Consumables ..57
8. Assay procedure .. 57
8.1. Amplification ..57
8.2. Analyzing on agarose gel electrophoresis ..58
8.3. Purification by AMPure XP Bead ..58
8.4. Quantify the pool using Qubit dsDNA Assay ... 59
8.5. Pooling and Normalization .. 59
8.6. Load to MinION and Sequence ... 59

9. Data analysis and Basic Bioinformatic .. 63
9.1. Linux .. 64
9.2. Conda and Miniconda ... 64
9.3. Docker ... 65
9.4. GitHub ..65
9.5. Visual Studio Code .. 65

10. Full-length 16S rRNA ONT data analysis using Centrifuge .. 66
10.1. Quick guide .. 66
10.2. KRONA .. 67

10.3. PAVIAN ..68

11. Full-length 16S rRNA ONT data analysis using Kraken2 .. 69
11.1. System Requirements ...70
11.2. Installation ..72
11.3. Kraken 2 Databases ...72
11.4. Standard Kraken 2 Database ...72
11.5. Classification ...73
11.6. Output Formats ...74
11.7. Translated Search .. 75

12. Full-length 16S rRNA ONT data analysis using Bracken .. 83
12.1. Installation ..83

55

12.2. RUNNING BRACKEN: EASY VERSION ...84

12.3. RUNNING BRACKEN: HARD VERSION .. 85

12.4. Kraken Tools ..87
12.5. Diversity Kraken Tools ..98

13. Full-length 16S rRNA ONT data analysis using NanoCLUST100
14. Metabolomics analysis of full-length 16S rRNA ONT data using Paprica 102
To run paprica you will need: ..102

15. References ... 104

56

1. Abbreviations

bp base pairs
°C degree Celsius
DNA deoxyribonucleic acid
dNTP deoxynucleotide triphosphate
μl microlitres
μM micromolar
ml millilitres
NTC non-template control
PCR polymerase chain reaction
PC positive control
RNA ribonucleic acid
RAP Rapid Sequencing Adapter

2. Purpose
Due to the presence of both highly conserved (adequate for universal primers and
phylogenetic signal) and highly variant regions (different across species), the 16S
rRNA gene is often used for sequence-based bacterial identification.

3. Principal of the assay
DNA is amplified and barcoded with the Oxford Nanopore 16S Barcoding Kit (SQK-
RAB204). Fragment of whole 16S rRNA gene (about 1500bp) is amplified, at the
same time, barcode are attached to the end of the sequence. There are 24 unique
barcodes, allowing the user to pool up to 24 different samples in one sequencing
experiment. Barcoded samples are pooled, and Rapid 1D Sequencing Adapters are
then added to the tagged ends. Samples are sequenced on MinION device.

4. Material
High molecular weight genomic DNA

5. Pre-analytics

For this protocol, you will need 10 ng high molecular weight genomic DNA: Transfer
10 ng genomic DNA into a DNA LoBind tube and adjust the volume to 10 μl with
nuclease-free water. Mix thoroughly by flicking the tube, to avoid unwanted shearing.
Spin down briefly in a microfuge

57

6. Equipment
 PCR thermo cycler
 Gel electrophoresis system
 Invitrogen™ Qubit™ 4 Fluorometer
 Invitrogen™ DynaMag™-2 Magnet
 MinION Mk1B Oxfore Nanopore
 PC like i7-10700KF / 64GB RAM / 1TB SSD
 Vortexer
 Tabletop centrifuge
 PCR workstation
 Pipettes set (P1000, P100, P10)

7. Reagent and Consumables
 LongAmp Taq 2X Master Mix (NEB, cat# M0287)
 Agencourt Ampure XP Beads (Beckman Coulter, cat# A63880/A63881)
 dsDNA BR assay kit (Thermo Fisher Scientific, cat# Q32850)
 Nuclease Free water (Thermo Fisher Scientific, cat# AM9916)
 Absoluter Ethanol (AppliChem, cat# A1613,2500PE)
 16S Barcoding Kit (Oxford Nanopore Technologies, cat# SQK-RAB204)
 10 mM Tris-HCl pH 8.0 with 50 mM NaCl
 Flongle Sequencing Expansion (Oxford Nanopore Technologies, cat#

EXP-FSE001)
 Flow Cell Priming Kit (Oxford Nanopore Technologies, cat# EXP-FLP002)
 SpotON Flow Cell R9.4.1 (Oxford Nanopore Technologies, cat# FLO-

MIN106D)
 Flongle device - flow cell and adapter (Oxford Nanopore Technologies,

cat# ADP-FLG001 and cat# FLO-FLG001
 Qubit assay tubes (Thermo Fisher Scientific, cat# Q32856)
 1.5 ml Eppendorf DNA LoBind tubes
 0.2ml PCR tubes
 Disposable filter tips

8. Assay procedure
8.1. Amplification

Thaw the 16S Barcodes at room temperature, mix by pipetting up and down, and
spin down briefly. Keep the barcodes on ice until ready to use.

- In a 0.2 ml thin-walled PCR tube, mix the following:

58

Component 1 reaction

Nuclease-free water 14 μL

Input DNA (10 ng) 10 μL

16S Barcode, at 10 μM 1 μl

LongAmp Taq 2X master mix 25 μl

Total 50 μL

- Mix gently by flicking the tube, and spin down.
- Amplify using the following cycling conditions:

CYCLE STEP TEMPERATURE TIME CYCLES

Initial denaturation 95 °C 1 minutes 1

Denaturation 95°C 20 seconds

25Annealing 55°C 30 seconds

Extension 65°C 2 minutes

Final extension 65°C 5 minutes 1

Hold 4 °C ∞

NOTE: If the amount of input material is altered, the number of
PCR cycles may need to be adjusted to produce the same yield.
Typically use 25 cycles.

Safe stopping point: Store at –20°C for up to one week, or –70°C for long term
storage.

8.2. Analyzing on agarose gel electrophoresis

- Using 5µL of PCR product to check the appearance of 1500bp bands on 1.1%
agarose gel

8.3. Purification by AMPure XP Bead

- Resuspend the AMPure XP beads by vortexing.
- Prepare fresh 80% ethanol in Nuclease-free water.
- Prepare 10mM Tris-HCl pH 7.5-8.0 with 50mM NaCl buffer.
- To the entire pooled sample (45μL - 50μL), add 25μL of resuspended AMPure

XP beads, and mix by flicking the tube.
- Incubate on a Hula mixer (rotator mixer) for 5 minutes at RT.
- Briefly spin down the sample and pellet on a magnet. Keep the tube on the

magnet, and pipette off the supernatant.
- Keep the tube on the magnet and wash the beads with 200μl of freshly

prepared 80% ethanol without disturbing the pellet. Remove the ethanol using
a pipette and discard.

59

- Repeat the previous step.
- Spin down and place the tube back on the magnet. Pipette off any residual

ethanol and briefly allow to dry.
- Remove the tube from the magnetic rack and resuspend pellet in 12μl of

10mM Tris-HCl pH 7.5-8.0 with 50mM NaCl. Incubate for 2 minutes at RT.
- Pellet the beads on a magnet until the eluate is clear and colorless.
- Remove and retain 10μL of eluate into a clean 1.5ml Eppendorf DNA LoBind

tube.

8.4. Quantify the pool using Qubit dsDNA Assay

- Set up the required number 0.5mL Qubit assay tubes for standards and
samples. Note: the standards require two tubes.

- Label tube lids. Do not label the side of the tube as this could interfere with
the sample read.

- Prepare the Qubit working solution by diluting the Qubit dsDNA HS reagent
1:200 in Qubit dsDNA HS buffer. Use a clean plastic tube each time you
prepare Qubit working solution. Do not mix the working solution in a glass
container.

- Prepare sufficient Qubit working solution to accommodate all standards and
samples.

- Add 190uL of Qubit working solution to each of the tubes used for standards.
- Add 10uL of each qubit standard to the appropriate tube, mix by vertexing 2-3

seconds.
- Add 197uL of Qubit working solution to each assay tube.
- Add 3uL each sample to the assay tubes, then mix by vertexing 2-3 seconds.

The final volume in each tube should be 200uL.
- Allow all tubes to incubate at room temperature for 2 minutes.
- Sample concentration can now be measured on the Qubit Fluorometer.

8.5. Pooling and Normalization

- Pool all barcoded libraries in the desired ratios to a total of 50-100 fmoles in
10 μl of 10 mM Tris-HCl pH 8.0 with 50 mM NaCl. For 16S amplicons of
~1500 bp, 50-100 fmoles equates to ~50-100 ng.

- Add 1 μl of RAP to the barcoded DNA.

- Mix gently by flicking the tube, and spin down.

- Incubate the reaction for 5 minutes at RT.

- The prepared library is used for loading into the MinION flow cell. Store the
library on ice until ready to load.

8.6. Load to MinION and Sequence
 Priming and loading the SpotON Flow Cell

- Set up the MinION flow cell and host computer, including MinKNOW software.

- Open the MinKNOW GUI from the desktop icon and establish a local
connection.

- Inset a flow cell into MinION.

60

- Click “Check Flow Cells” at the bottom of the screen then click “Start test.”
Check the number of active pores available. When the check is complete, it is
reported in the Notification panel. Check to ensure it has enough pores for a
good sequencing run (warranty for flow cells: 800 nanopores or above
checked within 5 days of receipt).

- Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT)
and one tube of Flush Buffer (FB) at room temperature before placing the
tubes on ice.

- Thoroughly mix the Sequencing Buffer (SQB) and Flush Buffer (FB) tubes by
vortexing. Spin down the Flush Tether (FLT) tube, mix by pipetting, and return
to ice.

- Prepare the flow cell priming mix: Add 30uL of thawed and mixed Flush
Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and
mix by pipetting up and down.

- Open the lid of the nanopore sequencing device and slide the flow cell's
priming port cover clockwise 90 degrees.

- Set a P1000 pipette to 200uL, insert the tip into the priming port, turn the
wheel until the dial shows 220-230uL, or until you can see a small volume of
buffer entering the pipette tip. Do not remove more than this.

- Visually check that there is continuous buffer from the priming port across the
sensor array.

- Load 800uL of the priming mix into the flow cell via the priming port, avoiding
the introduction of air bubbles. Wait for 5 minutes.

- Thoroughly mix the contents of the Loading Beads (LB) by pipetting.

- Prepare library for loading my mixing:

Component Volume (uL)
Sequencing Buffer (SQB) 34
Loading Beads (LB) 25.5
Nuclease free water 4.5
DNA Library (11µL pool) 11
Total 75

- Gently lift the SpotON sample port cover to make the SpotON sample port
accessible.

- Load 200µL of the priming mix into the flow cell via the priming port (not
theSpotON sample port), avoiding the introduction of air bubbles.

- Mix the prepared library gently by pipetting up and down just prior to loading.

- Add 75uL of sample to the flow cell via the SpotON sample port in a dropwise
fashion. Ensure each drop flows into the port before adding the next.

- Gently replace the SpotON sample port cover, making sure the bung enters
the SpotON port, close the priming port and replace the MinION lid.

61

- Start the sequencing run using the MinKNOW software.

 Loading the Flongle flow cell

- Set up the MinION flow cell and host computer, including MinKNOW software.

- Open the MinKNOW GUI from the desktop icon and establish a local
connection.

- Place the Flongle adapter into the MinION.

- The adapter should sit evenly and flat on the MinION Mk1B or GridION
platform. This ensures the flow cell assembly is flat during the next stage.

- Place the flow cell into the Flongle adapter and press the flow cell down until
you hear a click. Users should NOT touch the reverse side of the Flongle flow
cell array or the contact pads on the Flongle adapter.

- The flow cell should sit evenly and flat inside the adapter, to avoid any
bubbles forming inside the fluidic compartments.

- Click “Check Flow Cells” at the bottom of the screen then click “Start test.”
Check the number of active pores available. When the check is complete, it is
reported in the Notification panel. Check to ensure it has enough pores for a
good sequencing run (warranty for flow cells: 50 nanopores or above checked
within 5 days of receipt).

- Thaw the Sequencing Buffer II (SQBII), Loading Beads II (LBII), Flush Tether
(FLT) and Flush Buffer (FB) at room temperature before placing the tubes on
ice.

- Thoroughly mix by vortexing, spin down and return to ice.

- In a fresh 1.5ml Eppendorf DNA LoBind tube, mix 117μl of Flush Buffer (FB)
with 3μl of Flush Tether (FLT) and mix by pipetting.

- Peel back the seal tab from the Flongle flow cell, up to a point where the
sample port is exposed.

62

Lift up the seal tab; Pull the seal tab to open access to the sample port; Hold the seal tab open by
using adhesive on the tab to stick to the MinION Mk 1B lid

- To prime your flow cell with the mix of Flush Buffer (FB) and Flush Tether
(FLT) that was prepared earlier, ensure that there is no air gap in the sample
port or the pipette tip. Place the P200 pipette tip inside the sample port and
slowly dispense the priming fluid into the Flongle flow cell. To avoid flushing
the flow cell too vigorously, load the priming mix by twisting the pipette
plunger down.

- Vortex the vial of Loading Beads II (LBII). Note that the beads settle quickly,
so immediately prepare the Sequencing Mix in a fresh 1.5ml Eppendorf DNA
LoBind tube for loading the Flongle, as follows:

Component Volume (uL)
Sequencing Buffer II (SBII) 15
Loading Beads II (LBII) 10
DNA Library 5
Total 30

- To add the Sequencing Mix to the flow cell, ensure that there is no air gap in
the sample port or the pipette tip. Place the P100 tip inside the sample port
and slowly dispense the Sequencing Mix into the flow cell by twisting the
pipette plunger down.

- Seal the Flongle flow cell using the adhesive on the seal tab.

- Replace the sequencing platform lid.

63

9. Data analysis and Basic Bioinformatic

MinKNOW, the operating software that drives nanopore sequencing devices, carries
out several core tasks, including data acquisition, real-time analysis and feedback,
local basecalling, and data streaming. MinKNOW produces FAST5 (HDF5) files
and/or FASTQ files, based on preferences. FAST5 files contain raw signal data that
can be used for basecalling. In our work, we obtain raw data in FASTQ format that
contain nucleotide sequence data and their corresponding quality scores. The entire
data analysis can be carried in 5 steps starting from raw data acquisition from
MinKNOW.

First step of the analysis is basecalling which is usually completed by MinKNOW
software. This step includes barcoding/demultiplexing, adapter trimming and
alignment. For the rest of the analysis, you need to use bioinformatics workflows on
a Linux/Mac computer. You are advised to watch some bioinformatics lectures on
YouTube to get a good insight on these workflows. One such easy to follow lecture
series from Dr. Simon Cockell of University of Newcastle, UK can be viewed at

https://www.youtube.com/c/SimonCockell/videos

In addition, keeping in view of your upcoming training you are also suggested to
watch one recorded video on Nanopore data analysis. This lecture focusses on how
to analyse raw data obtained from MinKNOW software using bioinformatics pipelines.

https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-
nanopore-reads-consensus-genomes-using

Besides the above, some basic knowledge in Linux, Miniconda, Docker and GitHub
are essential. For editing the code, Visual studio code is also a nice to have software
that be easily installed on any OS. Linux and Mac operating systems are ideal for
bioinformatics. However, if your PC has Windows 10 as OS, you could still install
Linux and share all your data between the two operating systems without having to
reboot the PC.

If you are a beginner in bioinformatics without any prior knowledge in Linux or
any programming language, you can still do the data analysis, as the
bioinformatics workflows for Nanopore are meant to cater the needs of
biologists who wants to do sequence analysis by themselves.

https://www.youtube.com/c/SimonCockell/videos
https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-nanopore-reads-consensus-genomes-using
https://nanoporetech.com/resource-centre/bioinformatics-workflows-sars-cov-2-raw-nanopore-reads-consensus-genomes-using

64

9.1.Linux

Linux is an open-source operating system that is very secure, fast and reliable. Linux
is most preferred for bioinformatics workflow as it can easily handle large datasets.

Installation of Linux on Windows 10 PC or laptop

On a Windows 10 PC or laptop, Linux can be installed as WSL-2 (Windows-
subsystem for Linux, version 2). WSL is freely downloadable from Microsoft store on
Windows 10 PC.

IMPORTANT: System should be x64 systems: Windows Version 1903 or higher,
with Build 18362 or higher.

The information on Windows build can be found at
Start > Settings > System > About (under windows specifications)

More details on installation of WSL-2 can be read at the following URL

https://docs.microsoft.com/en-us/windows/wsl/install-win10#manual-installation-
steps

Users are advised to follow step-by-step instructions under the section “Install WSL
& update to WSL-2” at the above website. When asked for a username, you may
give a short name or initials, but without any spaces. When you type your password,
you may not see cursor moving, but Linux stores your password. You need to
confirm the password by typing again. For beginners in Linux, either Ubuntu 18.04 or
20.04 is ideal as there is lot of reading material on internet. WSL does not have a
graphical user interface (GUI) and hence some basic commands are essential for
easy manoeuvre at the terminal prompt. A very good intro to Linux can be found at

https://ubuntu.com/tutorials/command-line-for-beginners#1-overview

There is lot of literature on Ubuntu on internet. For a start, following websites are
useful from bioinformatics perspective.

1. http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-
operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/

2. https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html#gsc.ta
b=0

9.2.Conda and Miniconda

Conda is an open-source package management and environment management
system that runs on any OS. It has been created for Python programs, although it
can package and distribute software for any language. Conda as a package
manager helps you find and install packages. You will learn more about this package
manager as you use it regularly.

Miniconda is a free minimal installer for conda. It is a small, bootstrap version of
Anaconda that includes only conda, Python, the packages they depend on, and a
small number of other useful packages, including pip, zlib and a few others. To know
more about Conda / miniconda, please refer to the following website.

https://docs.conda.io/projects/conda/en/latest/

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://ubuntu.com/tutorials/command-line-for-beginners%231-overview
http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/
http://www.cellbiol.com/bioinformatics_web_development/chapter-2-the-linux-operating-system-setting-up-a-linux-web-server/basic-linux-shell-commands/
https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html%23gsc.tab=0
https://bioinformaticsworkbook.org/Appendix/Unix/UnixCheatSheet.html%23gsc.tab=0
https://docs.conda.io/projects/conda/en/latest/

65

Install Miniconda on WSL

At Ubuntu terminal, you need to type the following commands at $ prompt

$ wget https://repo.continuum.io/miniconda/ Miniconda3-py39_4.9.2-Linux-
x86_64.sh

Click Enter button. The above command will download the miniconda from internet.

$ bash Miniconda3-py39_4.9.2-Linux-x86_64.sh

The above command will install the miniconda application on your Linux.

If your system is Mac,

$ wget https://repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-
x86_64.sh

Followed by

$ bash Miniconda3-py39_4.9.2-MacOSX-x86_64.sh

9.3.Docker

Docker is an open-source software platform to build, deploy or execute applications
by using containers. As the name indicates, containerization isolate applications with
each container having a separate environment at the same time sharing the
underlying OS kernel. Docker provides a good platform to run multiple applications at
the same time, each needing its own environment. Containerization is very similar to
virtual machines, but unlike VMs, containers are faster and use less system
resources. Each Docker container has an image file to create a run-time
environment for the supposed application.

Installing Docker

Docker can be easily installed on WSL2 based windows by following instructions as
mentioned in the below URL

https://docs.docker.com/docker-for-windows/wsl/

9.4.GitHub

GitHub is an Open-source Community where people around the globe work together
on Open-source projects and make contributions. GitHub is also a code hosting
platform for collaboration and version control. Importantly, GitHub is a repository for
bioinformatics pipelines, and in our work, we use GitHub to download Nanopore
workflows.

For more information and basic commands on GitHub, please refer to

https://guides.github.com/introduction/git-handbook/

9.5.Visual Studio Code

This editor can be downloaded freely from https://code.visualstudio.com
depending on the type of OS. This is very useful software to edit the code, besides
providing an excellent platform to integrate linux terminal, Git and docker.

file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/%20Miniconda3-py39_4.9.2-Linux-x86_64.sh
file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/%20Miniconda3-py39_4.9.2-Linux-x86_64.sh
file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-x86_64.sh
file:///D:/protocol/wget%20https:/repo.continuum.io/miniconda/Miniconda3-py39_4.9.2-MacOSX-x86_64.sh
https://docs.docker.com/docker-for-windows/wsl/
https://guides.github.com/introduction/git-handbook/
https://code.visualstudio.com

66

10. Full-length 16S rRNA ONT data analysis using
Centrifuge

[Centrifuge] is a novel microbial classification engine that enables rapid, accurate
and sensitive labeling of reads and quantification of species on desktop computers.
The system uses a novel indexing scheme based on the Burrows-Wheeler transform
(BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the
metagenomic classification problem. Centrifuge requires a relatively small index (4.7
GB for all complete bacterial and viral genomes plus the human genome) and
classifies sequences at very high speed, allowing it to process the millions of reads
from a typical high-throughput DNA sequencing run within a few minutes. Together
these advances enable timely and accurate analysis of large metagenomics data
sets on conventional desktop computers

The Centrifuge homepage is http://www.ccb.jhu.edu/software/centrifuge

The Centrifuge paper is available at https://genome.cshlp.org/content/26/12/1721

The Centrifuge poster is available
at http://www.ccb.jhu.edu/people/infphilo/data/Centrifuge-poster.pdf

10.1. Quick guide
Installation from source

https://github.com/DaehwanKimLab/centrifuge

git clone https://github.com/infphilo/centrifuge
cd centrifuge
make
sudo make install prefix=/usr/local

Building indexes
We provide several indexes on the Centrifuge homepage
at http://www.ccb.jhu.edu/software/centrifuge. Centrifuge needs sequence and
taxonomy files, as well as sequence ID to taxonomy ID mapping. See the MANUAL
files for details. We provide a Makefile that simplifies the building of several standard
and custom indices

cd indices
make p+h+v # bacterial, human, and viral genomes [~12G]
make p_compressed # bacterial genomes compressed at the species level
[~4.2G]
make p_compressed+h+v # combination of the two above [~8G]

It can be used the following commands to run centrifuge and to visualise

http://www.ccb.jhu.edu/software/centrifuge
https://genome.cshlp.org/content/26/12/1721
http://www.ccb.jhu.edu/people/infphilo/data/Centrifuge-poster.pdf
https://github.com/DaehwanKimLab/centrifuge
http://www.ccb.jhu.edu/software/centrifuge

67

centrifuge output (Check where sample?)

to run centrifuge

1. conda activate centrifuge

2. centrifuge -x p_compressed+h+v /home/ngs/analysis/sample.fastq --report-file
report_ sample.txt -S results_ sample.txt

3. centrifuge-kreport -x p_compressed+h+v ./results_ sample.txt > evolved-
kreport_ sample.txt

to visualise centrifuge output data using krona

4. conda activate krona

5. cat results_ sample.txt | cut -f 1,3 > results_ sample.krona

6.ktImportTaxonomy results_ sample.krona

10.2. KRONA
Krona allows hierarchical data to be explored with zooming, multi-layered pie charts. Krona
charts can be created using an Excel template or KronaTools, which includes support for
several bioinformatics tools and raw data formats. The interactive charts are self-contained
and can be viewed with any modern web browser.

Installing
htps://github.com/marbl/Krona/wiki/Installing

68

To install KronaTools, unpack the archive, cd to the resulting directory on a
command line, and run ./install.pl. If installing to /usr/local (the default), root privileges
will be needed (use "sudo ./install.pl" in OS X).
Options for install.pl:

 "--prefix <path>" - scripts will be installed in the bin directory within this path. The
default is /usr/local/.

 "--taxonomy <path>" - taxonomy files will be stored in this directory
when updateTaxonomy.sh or updateAccessions.sh is run. The default is taxonomy/ within
the unpacked KronaTools directory. If the taxonomy database was installed in a
previous version of Krona Tools, it can be reused by moving it to the to new
KronaTools folder or by pointing to it with this option.

10.3. PAVIAN

evolved-kreport_ sample.txt file can be also visualised using Pavian

Pavian is a interactive browser application for analyzing and visualization
metagenomics classification results from classifiers such as Kraken, KrakenUniq,
Kraken 2, Centrifuge and MetaPhlAn. Pavian also provides an alignment viewer for
validation of matches to a particular genome.

For more information look at the publication
at https://doi.org/10.1093/bioinformatics/btz715

Pavian: interactive analysis of metagenomics data for microbiome studies and
pathogen identification. FP Breitwieser, SL Salzberg - Bioinformatics, 2020

Thank you for citing the publication if Pavian helps in your research :).

You can try out Pavian at https://fbreitwieser.shinyapps.io/pavian/.

Installation and deployment
Pavian is a R package, and thus requires R to run. Look here for how to install R. On
Windows, you probably need to install Rtools. On Ubuntu, install r-base-dev. Once you
started R, the following commands will install the package:
if (!require(remotes)) { install.packages("remotes") }
remotes::install_github("fbreitwieser/pavian")
To run Pavian from R, type

pavian::runApp(port=5000)

Pavian will then be available at http://127.0.0.1:5000 in the web browser of your
choice. Alternatively, you can install and test Pavian with the following command:

shiny::runGitHub("fbreitwieser/pavian", subdir = "inst/shinyapp")
To try out Pavian, load the example files directly from the interface.

Installing R samtools
The alignment viewer uses Rsamtools. To install this package from Bioconductor,
use the following commands

https://doi.org/10.1093/bioinformatics/btz715
https://fbreitwieser.shinyapps.io/pavian/
http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/installr.html
https://github.com/fbreitwieser/pavian/blob/master/cran.r-project.org/bin/windows/Rtools
http://127.0.0.1:5000/
https://github.com/fbreitwieser/pavian/tree/master/inst/shinyapp/example-data
https://bioconductor.org/packages/release/bioc/html/Rsamtools.html

69

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("Rsamtools")

Installing to Shinyapps.io
In order to install to Shinyapps.io, because of the Bioconductor repo dependencies,
you need to first set the options using setRepositories() in R. At that point a
`rsconnect::deployApp('pavian/inst/shinapp/') should work.

Docker image
As an alternative to installing Pavian in R, a Docker image is available
at florianbw/pavian. When you run this docker image, Pavian will start automatically
on port 80, which you need to make available to the hosting machine. On the shell,
you can pull the image and remap the Docker port to port 5000 with the following
commands:

docker pull 'florianbw/pavian'
docker run --rm -p 5000:80 florianbw/pavian
Screenshots

11. Full-length 16S rRNA ONT data analysis using
Kraken2

Kraken 2 is the newest version of Kraken, a taxonomic classification system using
exact k-mer matches to achieve high accuracy and fast classification speeds. This
classifier matches each k-mer within a query sequence to the lowest common
ancestor (LCA) of all genomes containing the given k-mer. The k-mer assignments
inform the classification algorithm. [see: Kraken 1's Webpage for more details].

Kraken 2 provides significant improvements to Kraken 1, with faster database build
times, smaller database sizes, and faster classification speeds. These
improvements were achieved by the following updates to the Kraken classification
program:

https://hub.docker.com/r/florianbw/pavian/
https://ccb.jhu.edu/software/kraken/

70

1. Storage of Minimizers: Instead of storing/querying entire k-mers, Kraken 2
stores minimizers (l-mers) of each k-mer. The length of each l-mer must be ≤
the k-mer length. Each k-mer is treated by Kraken 2 as if its LCA is the same
as its minimizer's LCA.

2. Introduction of Spaced Seeds: Kraken 2 also uses spaced seeds to store
and query minimizers to improve classification accuracy.

3. Database Structure: While Kraken 1 saved an indexed and sorted list of k-
mer/LCA pairs, Kraken 2 uses a compact hash table. This hash table is a
probabilistic data structure that allows for faster queries and lower memory
requirements. However, this data structure does have a <1% chance of
returning the incorrect LCA or returning an LCA for a non-inserted minimizer.
Users can compensate for this possibility by using Kraken's confidence
scoring thresholds.

4. Protein Databases: Kraken 2 allows for databases built from amino acid
sequences. When queried, Kraken 2 performs a six-frame translated search
of the query sequences against the database.

5. 16S Databases: Kraken 2 also provides support for databases not based on
NCBI's taxonomy. Currently, these include the 16S databases: Greengenes,
SILVA, and RDP.

KRAKEN 2 AND OTHER TOOLS
The following tools are compatible Kraken 2. They are designed to assist
users in analyzing and visualizing Kraken results.
Bracken allows users to estimate relative abundances within a specific sample
from Kraken 2 classification results. Bracken uses a Bayesian model to estimate
abundance at any standard taxonomy level, including species/genus-level
abundance.
Pavian has also been developed as a comprehensive visualization program that
can compare Kraken 2 classifications across multiple samples.
KrakenTools is a suite of scripts to assist in the analysis of Kraken results.
KrakenTools is an ongoing project led by Jennifer Lu.

11.1. System Requirements

 Disk space: Construction of a Kraken 2 standard database requires
approximately 100 GB of disk space. A test on 01 Jan 2018 of the default
installation showed 42 GB of disk space was used to store the genomic library
files, 26 GB was used to store the taxonomy information from NCBI, and 29
GB was used to store the Kraken 2 compact hash table.

Like in Kraken 1, we strongly suggest against using NFS storage to store the
Kraken 2 database if at all possible.

 Memory: To run efficiently, Kraken 2 requires enough free memory to hold
the database (primarily the hash table) in RAM. While this can be
accomplished with a ramdisk, Kraken 2 will by default load the database into

https://ccb.jhu.edu/software/bracken/
https://ccb.jhu.edu/software/pavian/
https://ccb.jhu.edu/software/krakentools/
https://ccb.jhu.edu/people/jennifer.lu

71

process-local RAM; the --memory-mapping switch to kraken2 will avoid doing
so. The default database size is 29 GB (as of Jan. 2018), and you will need
slightly more than that in RAM if you want to build the default database.

 Dependencies: Kraken 2 currently makes extensive use of Linux utilities such
as sed, find, and wget. Many scripts are written using the Bash shell, and the
main scripts are written using Perl. Core programs needed to build the
database and run the classifier are written in C++11, and need to be compiled
using a somewhat recent version of g++ that will support C++11.
Multithreading is handled using OpenMP. Downloads of NCBI data are
performed by wget and rsync. Most Linux systems will have all of the above
listed programs and development libraries available either by default or via
package download.

Unlike Kraken 1, Kraken 2 does not use an external k-mer counter. However,
by default, Kraken 2 will attempt to use
the dustmasker or segmasker programs provided as part of NCBI's BLAST
suite to mask low-complexity regions (see [Masking of Low-complexity
Sequences]).

MacOS NOTE: MacOS and other non-Linux operating systems
are not explicitly supported by the developers, and MacOS users should refer
to the Kraken-users group for support in installing the appropriate utilities to
allow for full operation of Kraken 2. We will attempt to use MacOS-compliant
code when possible, but development and testing time is at a premium and
we cannot guarantee that Kraken 2 will install and work to its full potential on
a default installation of MacOS.

In particular, we note that the default MacOS X installation of GCC does not
have support for OpenMP. Without OpenMP, Kraken 2 is limited to single-
threaded operation, resulting in slower build and classification runtimes.

 Network connectivity: Kraken 2's standard database build and download
commands expect unfettered FTP and rsync access to the NCBI FTP server.
If you're working behind a proxy, you may need to set certain environment
variables (such as ftp_proxy or RSYNC_PROXY) in order to get these
commands to work properly.
Kraken 2's scripts default to using rsync for most downloads; however, you
may find that your network situation prevents use of rsync. In such cases, you
can try the --use-ftp option to kraken2-build to force the downloads to occur
via FTP.

 MiniKraken: At present, users with low-memory computing environments can
replicate the "MiniKraken" functionality of Kraken 1 in two ways: first, by
increasing the value of k with respect to l (using the --kmer-len and --
minimizer-len options to kraken2-build); and secondly, through downsampling
of minimizers (from both the database and query sequences) using a hash
function. This second option is performed if the --max-db-size option
to kraken2-build is used; however, the two options are not mutually exclusive.
In a difference from Kraken 1, Kraken 2 does not require building a full
database and then shrinking it to obtain a reduced database.

72

11.2. Installation
To begin using Kraken 2, you will first need to install it, and then either download or
create a database.

Kraken 2 consists of two main scripts (kraken2 and kraken2-build), along with
several programs and smaller scripts. As part of the installation process, all scripts
and programs are installed in the same directory. After installation, you can move the
main scripts elsewhere, but moving the other scripts and programs requires editing
the scripts and changing the $KRAKEN2_DIR variables in the main scripts.
Once an install directory is selected, you need to run the following command in the
directory where you extracted the Kraken 2 source:

./install_kraken2.sh $KRAKEN2_DIR
(Replace $KRAKEN2_DIR above with the directory where you want to install Kraken
2's programs/scripts.)
The install_kraken2.sh script should compile all of Kraken 2's code and setup your
Kraken 2 program directory. Installation is successful if you see the message
"Kraken 2 installation complete."
Once installation is complete, you may want to copy the main Kraken 2 scripts into a
directory found in your PATH variable (e.g., "$HOME/bin"):
cp $KRAKEN2_DIR/kraken2{,-build,-inspect} $HOME/bin
After installation, you're ready to either create or download a database.

11.3. Kraken 2 Databases
A Kraken 2 database is a directory containing at least 3 files:

 hash.k2d: Contains the minimizer to taxon mappings
 opts.k2d: Contains information about the options used to build the database
 taxo.k2d: Contains taxonomy information used to build the database

None of these three files are in a human-readable format. Other files may also be
present as part of the database build process, and can, if desired, be removed after
a successful build of the database.

In interacting with Kraken 2, you should not have to directly reference any of these
files, but rather simply provide the name of the directory in which they are stored.
Kraken 2 allows both the use of a standard database as well as custom databases;
these are described in the sections [Standard Kraken 2 Database] and [Custom
Databases] below, respectively.

11.4. Standard Kraken 2 Database
To create the standard Kraken 2 database, you can use the following command:

kraken2-build --standard --db $DBNAME
(Replace "$DBNAME" above with your preferred database name/location. Please
note that the database will use approximately 100 GB of disk space during creation,
with the majority of that being reference sequences or taxonomy mapping
information that can be removed after the build.)
This will download NCBI taxonomic information, as well as the complete genomes in
RefSeq for the bacterial, archaeal, and viral domains, along with the human genome
and a collection of known vectors (UniVec_Core). After downloading all this data, the

73

build process begins; this can be the most time-consuming step. If you have multiple
processing cores, you can run this process with multiple threads, e.g.:

kraken2-build --standard --threads 24 --db $DBNAME
Using 32 threads on an AWS EC2 r4.8xlarge instance with 16 dual-core
hyperthreaded 2.30 GHz CPUs and 244 GB of RAM, the build process took
approximately 35 minutes in Jan. 2018.

The build process itself has two main steps, each of which requires passing over the
contents of the reference library:

1. Estimation of the capacity needed in the Kraken 2 compact hash table. This
uses a low-memory method to reliably estimate the number of minimizers
present in the reference library given the selected parameters k and l.

2. Population of the hash table (and conversion of the taxonomy to an internal
format). This step is a second pass over the reference library to find
minimizers and then place them in the database.

(There is one other preliminary step where sequence IDs are mapped to taxonomy
IDs, but this is usually a rather quick process and is mostly handled during library
downloading.)

Unlike Kraken 1's build process, Kraken 2 does not perform checkpointing after the
estimation step. This is because the estimation step is dependent on the
selected k and l values, and if the population step fails, it is likely because k needs to
be increased (reducing the overall memory requirements).

11.5. Classification
To classify a set of sequences, use the kraken2 command:
kraken2 --db $DBNAME seqs.fa
Output will be sent to standard output by default. The files containing the sequences
to be classified should be specified on the command line. Sequences can also be
provided through standard input using the special filename /dev/fd/0.
The kraken2 program allows several different options:

 Multithreading: Use the --threads NUM switch to use multiple threads.
 Quick operation: Rather than searching all l-mers in a sequence, stop

classification after the first database hit; use --quick to enable this mode.
 Hit group threshold: The option --minimum-hit-groups will allow you to

require multiple hit groups (a group of overlapping k-mers that share a
common minimizer that is found in the hash table) be found before declaring a
sequence classified, which can be especially useful with custom databases
when testing to see if sequences either do or do not belong to a particular
genome.

 Sequence filtering: Classified or unclassified sequences can be sent to a file
for later processing, using the --classified-out and --unclassified-out switches,
respectively.

 Output redirection: Output can be directed using standard shell redirection
(| or >), or using the --output switch.

 Compressed input: Kraken 2 can handle gzip and bzip2 compressed files as
input by specifying the proper switch of --gzip-compressed or --bzip2-
compressed.

74

 Input format auto-detection: If regular files (i.e., not pipes or device files) are
specified on the command line as input, Kraken 2 will attempt to determine
the format of your input prior to classification. You can disable this by explicitly
specifying --gzip-compressed or --bzip2-compressed as appropriate. Note that
use of the character device file /dev/fd/0 to read from standard input (aka stdin)
will not allow auto-detection.

 Paired reads: Kraken 2 provides an enhancement over Kraken 1 in its
handling of paired read data. Rather than needing to concatenate the pairs
together with an N character between the reads, Kraken 2 is able to process
the mates individually while still recognizing the pairing information. Using
the --paired option to kraken2 will indicate to kraken2 that the input files
provided are paired read data, and data will be read from the pairs of files
concurrently.
Usage of --paired also affects the --classified-out and --unclassified-
out options; users should provide a # character in the filenames provided to
those options, which will be replaced by kraken2 with "_1" and "_2" with
mates spread across the two files appropriately. For example:
kraken2 --paired --classified-out cseqs#.fq seqs_1.fq seqs_2.fq
will put the first reads from classified pairs in cseqs_1.fq, and the second
reads from those pairs in cseqs_2.fq.

To get a full list of options, use kraken2 --help.
11.6. Output Formats

Standard Kraken Output Format
Each sequence (or sequence pair, in the case of paired reads) classified by Kraken
2 results in a single line of output. Kraken 2's output lines contain five tab-delimited
fields; from left to right, they are:

1. "C"/"U": a one letter code indicating that the sequence was either classified or
unclassified.

2. The sequence ID, obtained from the FASTA/FASTQ header.

3. The taxonomy ID Kraken 2 used to label the sequence; this is 0 if the
sequence is unclassified.

4. The length of the sequence in bp. In the case of paired read data, this will be
a string containing the lengths of the two sequences in bp, separated by a
pipe character, e.g. "98|94".

5. A space-delimited list indicating the LCA mapping of each k-mer in the
sequence(s). For example, "562:13 561:4 A:31 0:1 562:3" would indicate that:

o the first 13 k-mers mapped to taxonomy ID #562
o the next 4 k-mers mapped to taxonomy ID #561
o the next 31 k-mers contained an ambiguous nucleotide
o the next k-mer was not in the database
o the last 3 k-mers mapped to taxonomy ID #562

75

Note that paired read data will contain a "|:|" token in this list to indicate the
end of one read and the beginning of another.
When Kraken 2 is run against a protein database (see [Translated Search]),
the LCA hitlist will contain the results of querying all six frames of each
sequence. Reading frame data is separated by a "-:-" token.

Kraken 1 offered a kraken-translate and kraken-report script to change the output
into different formats. Through the use of kraken2 --use-names, Kraken 2 will replace
the taxonomy ID column with the scientific name and the taxonomy ID in parenthesis
(e.g., "Bacteria (taxid 2)" instead of "2"), yielding similar functionality to Kraken
1's kraken-translate script. The sample report functionality now exists as part of
the kraken2 script, with the use of the --report option; the sample report formats are
described below.
Sample Report Output Format
Like Kraken 1, Kraken 2 offers two formats of sample-wide results. Kraken 2's
standard sample report format is tab-delimited with one line per taxon. The fields of
the output, from left-to-right, are as follows:

1. Percentage of fragments covered by the clade rooted at this taxon
2. Number of fragments covered by the clade rooted at this taxon
3. Number of fragments assigned directly to this taxon
4. A rank code, indicating (U)nclassified, (R)oot, (D)omain, (K)ingdom, (P)hylum,

(C)lass, (O)rder, (F)amily, (G)enus, or (S)pecies. Taxa that are not at any of
these 10 ranks have a rank code that is formed by using the rank code of the
closest ancestor rank with a number indicating the distance from that rank.
E.g., "G2" is a rank code indicating a taxon is between genus and species and
the grandparent taxon is at the genus rank.

5. NCBI taxonomic ID number
6. Indented scientific name

The scientific names are indented using space, according to the tree structure
specified by the taxonomy.

By default, taxa with no reads assigned to (or under) them will not have any output
produced. However, if you wish to have all taxa displayed, you can use the --report-
zero-counts switch to do so. This can be useful if you are looking to do further
downstream analysis of the reports, and want to compare samples. Sorting by the
taxonomy ID (using sort -k5,5n) can provide a consistent line ordering between
reports.
In addition, we also provide the option --use-mpa-style that can be used in
conjunction with --report. This option provides output in a format similar to
MetaPhlAn's output. The output with this option provides one taxon per line, with a
lowercase version of the rank codes in Kraken 2's standard sample report format
(except for 'U' and 'R'), two underscores, and the scientific name of the taxon (e.g.,
"d__Viruses"). The full taxonomy of each taxon (at the eight ranks considered) is
given, with each rank's name separated by a pipe character (e.g.,
"d__Viruses|o_Caudovirales"). Following this version of the taxon's scientific name is
a tab and the number of fragments assigned to the clade rooted at that taxon.

11.7. Translated Search

76

Kraken 2 allows users to perform a six-frame translated search, similar to the well-
known BLASTX program. To do this, Kraken 2 uses a reduced 15 amino acid
alphabet and stores amino acid minimizers in its database. LCA results from all 6
frames are combined to yield a set of LCA hits, which is then resolved in the same
manner as in Kraken's normal operation.

To build a protein database, the --protein option should be given to kraken2-
build (either along with --standard, or with all steps if building a custom database).

11.7.1. Custom Databases
We realize the standard database may not suit everyone's needs. Kraken 2 also
allows creation of customized databases.

To build a custom database:

1. Install a taxonomy. Usually, you will just use the NCBI taxonomy, which you
can easily download using:

2. kraken2-build --download-taxonomy --db $DBNAME
This will download the accession number to taxon maps, as well as the
taxonomic name and tree information from NCBI. These files can be found
in $DBNAME/taxonomy/ . If you need to modify the taxonomy, edits can be
made to the names.dmp and nodes.dmp files in this directory; you may also
need to modify the *.accession2taxid files appropriately.
Some of the standard sets of genomic libraries have taxonomic information
associated with them, and don't need the accession number to taxon maps to
build the database successfully. These libraries include all those available
through the --download-library option (see next point), except for
the plasmid and non-redundant databases. If you are not using custom
sequences (see the --add-to-library option) and are not using one of
the plasmid or non-redundant database libraries, you may want to skip
downloading of the accession number to taxon maps. This can be done by
passing --skip-maps to the kraken2-build --download-taxonomy command.

3. Install one or more reference libraries. Several sets of standard
genomes/proteins are made easily available through kraken2-build:

o archaea: RefSeq complete archaeal genomes/proteins
o bacteria: RefSeq complete bacterial genomes/proteins
o plasmid: RefSeq plasmid nucleotide/protein sequences
o viral: RefSeq complete viral genomes/proteins
o human: GRCh38 human genome/proteins
o fungi: RefSeq complete fungal genomes/proteins
o plant: RefSeq complete plant genomes/proteins
o protozoa: RefSeq complete protozoan genomes/proteins
o nr: NCBI non-redundant protein database
o nt: NCBI non-redundant nucleotide database
o UniVec: NCBI-supplied database of vector, adapter, linker, and primer

sequences that may be contaminating sequencing projects and/or
assemblies

o UniVec_Core: A subset of UniVec chosen to minimize false positive
hits to the vector database

77

o env_nr and env_nt are no longer supported by NCBI and therefore are
no longer available for download.

To download and install any one of these, use the --download-library switch,
e.g.:
kraken2-build --download-library bacteria --db $DBNAME
Multiple libraries can be downloaded into a database prior to building by
issuing multiple kraken2-build --download-library commands, e.g.:
kraken2-build --download-library archaea --db $DBNAME
kraken2-build --download-library viral --db $DBNAME
The above commands would prepare a database that would contain archaeal
and viral genomes; the --build option (see below) will still need to be used
after downloading these libraries to actually build the database, however.
(Note that downloading nr requires use of the --protein option, and
that UniVec and UniVec_Core are incompatible with the --protein option.)

Other genomes can also be added, but such genomes must meet certain
requirements:

o Sequences must be in a FASTA file (multi-FASTA is allowed)
o Each sequence's ID (the string between the > and the first whitespace

character on the header line) must contain either an NCBI accession
number to allow Kraken 2 to lookup the correct taxa, or an explicit
assignment of the taxonomy ID using kraken:taxid (see below).

Sequences not downloaded from NCBI may need their taxonomy information
assigned explicitly. This can be done using the string kraken:taxid|XXX in the
sequence ID, with XXX replaced by the desired taxon ID. For example, to put
a known adapter sequence in taxon 32630 ("synthetic construct"), you could
use the following:
>sequence16|kraken:taxid|32630 Adapter sequence
CAAGCAGAAGACGGCATACGAGATCTTCGAGTGACTGGAGTTCCTTGGC
ACCCGAGAATTCCA
The kraken:taxid string must begin the sequence ID or be immediately
preceded by a pipe character (|). Explicit assignment of taxonomy IDs in this
manner will override the accession number mapping provided by NCBI.
If your genomes meet the requirements above, then you can add each
sequence to your database's genomic library using the --add-to-library switch,
e.g.:
kraken2-build --add-to-library chr1.fa --db $DBNAME
kraken2-build --add-to-library chr2.fa --db $DBNAME
Note that if you have a list of files to add, you can do something like this
in bash:
for file in chr*.fa
do
kraken2-build --add-to-library $file --db $DBNAME

done
Or even add all *.fa files found in the directory genomes:
find genomes/ -name '*.fa' -print0 | xargs -0 -I{} -n1 kraken2-build --add-to-
library {} --db $DBNAME

78

(You may also find the -P option to xargs useful to add many files in parallel if
you have multiple processors.)

4. Once your library is finalized, you need to build the database. This can be
done with the command:

5. kraken2-build --build --db $DBNAME
The --threads option is also helpful here to reduce build time.
By default, the values of k and l are 35 and 31, respectively (or 15 and 12 for
protein databases). These values can be explicitly set with the --kmer-
len and minimizer-len options, however. Note that the minimizer length must
be no more than 31 for nucleotide databases, and 15 for protein databases.
Additionally, the minimizer length l must be no more than the k-mer length.
There is no upper bound on the value of k, but sequences less than k bp in
length cannot be classified.

Kraken 2 also utilizes a simple spaced seed approach to increase accuracy. A
number s < l/4 can be chosen, and s positions in the minimizer will be masked
out during all comparisons. Masked positions are chosen to alternate from the
second-to-last position in the minimizer; e.g., s = 5 and l = 31 will result in
masking out the 0 positions shown here:

111 1111 1111 1111 1111 1101 0101 0101
By default, s = 7 for nucleotide databases, and k = 0 for protein databases.
This can be changed using the --minimizer-spaces option along with the --
build task of kraken2-build.

A full list of options for kraken2-build can be obtained using kraken2-build --help.
After building a database, if you want to reduce the disk usage of the database, you
can use the --clean option for kraken2-build to remove intermediate files from the
database directory.

11.7.2. Masking of Low-complexity Sequences
Low-complexity sequences, e.g. "ACACACACACACACACACACACACAC", are
known to occur in many different organisms and are typically less informative for use
in alignments; the BLAST programs often mask these sequences by default. Using
this masking can help prevent false positives in Kraken 2's results, and so we have
added this functionality as a default option to Kraken 2's library download/addition
process.

Kraken 2 uses two programs to perform low-complexity sequence masking, both
available from NCBI: dustmasker, for nucleotide sequences, and segmasker, for
amino acid sequences. These programs are available as part of the NCBI BLAST+
suite. If these programs are not installed on the local system and in the user's PATH
when trying to use kraken2-build, the database build will fail. Users who do not wish
to install these programs can use the --no-masking option to kraken2-build in
conjunction with any of the --download-library, --add-to-library, or --standard options;
use of the --no-masking option will skip masking of low-complexity sequences during
the build of the Kraken 2 database.

11.7.3. Special Databases

79

To support some common use cases, we provide the ability to build Kraken 2
databases using data from various external databases. These external databases
may not follow the NCBI taxonomy, and so we've provided mechanisms to
automatically create a taxonomy that will work with Kraken 2 (although such
taxonomies may not be identical to NCBI's).

To build one of these "special" Kraken 2 databases, use the following command:

kraken2-build --db $DBNAME --special TYPE
where the TYPE string is one of the database names listed below.
At present, the "special" Kraken 2 database support we provide is limited to pre-
packaged solutions for some public 16S sequence databases, but this may grow in
the future.

11.7.4. 16S Databases
For targeted 16S sequencing projects, a normal Kraken 2 database using whole
genome data may use more resources than necessary. A Kraken 2 database
created from a well-curated genomic library of just 16S data can provide both a more
efficient solution as well as a more accurate set of predictions for such projects. We
provide support for building Kraken 2 databases from three publicly available 16S
databases:

 Greengenes (Kraken 2 database name: greengenes), using all available 16S
data.

 RDP (Kraken 2 database name: rdp), using the bacterial and archaeal 16S
data.

 SILVA (Kraken 2 database name: silva), using the Small subunit NR99
sequence set.

Note that these databases may have licensing restrictions regarding their data, and it
is your responsibility to ensure you are in compliance with those restrictions; please
visit the databases' websites for further details. The kraken2-build script only uses
publicly available URLs to download data and then converts that data into a form
compatible for use with Kraken 2.
Furthermore, if you use one of these databases in your research, please visit the
corresponding database's website to determine the appropriate and up-to-date
citation.

11.7.5. Confidence Scoring
At present, we have not yet developed a confidence score with a probabilistic
interpretation for Kraken 2. However, we have developed a simple scoring scheme
that has yielded good results for us, and we've made that available in Kraken 2
through use of the --confidence option to kraken2. The approach we use allows a
user to specify a threshold score in the [0,1] interval; the classifier then will adjust
labels up the tree until the label's score (described below) meets or exceeds that
threshold. If a label at the root of the taxonomic tree would not have a score
exceeding the threshold, the sequence is called unclassified by Kraken 2 when this
threshold is applied.
A sequence label's score is a fraction C/Q, where C is the number of k-mers mapped
to LCA values in the clade rooted at the label, and Q is the number of k-mers in the
sequence that lack an ambiguous nucleotide (i.e., they were queried against the

http://greengenes.lbl.gov/
http://rdp.cme.msu.edu/
http://www.arb-silva.de/

80

database). Consider the example of the LCA mappings in Kraken 2's output given
earlier:

"562:13 561:4 A:31 0:1 562:3" would indicate that:

 the first 13 k-mers mapped to taxonomy ID #562
 the next 4 k-mers mapped to taxonomy ID #561
 the next 31 k-mers contained an ambiguous nucleotide
 the next k-mer was not in the database
 the last 3 k-mers mapped to taxonomy ID #562

In this case, ID #561 is the parent node of #562. Here, a label of #562 for this
sequence would have a score of C/Q = (13+3)/(13+4+1+3) = 16/21. A label of #561
would have a score of C/Q = (13+4+3)/(13+4+1+3) = 20/21. If a user specified a --
confidence threshold over 16/21, the classifier would adjust the original label from
#562 to #561; if the threshold was greater than 20/21, the sequence would become
unclassified.

11.7.6. Inspecting a Kraken 2 Database's Contents
The kraken2-inspect script allows users to gain information about the content of a
Kraken 2 database. The output format of kraken2-inspect is identical to the reports
generated with the --report option to kraken2. Instead of reporting how many reads in
input data classified to a given taxon or clade, as kraken2's --report option would,
the kraken2-inspect script will report the number of minimizers in the database that
are mapped to the various taxa/clades. For example, the first five lines of kraken2-
inspect's output on an example database might look like this:
$ kraken2-inspect --db EXAMPLE_DB | head -5
100.00% 1770368409 1581179 R 1 root
96.50% 1708407622 58003 R1 131567 cellular organisms
91.28% 1615910070 985309 D 2 Bacteria
43.89% 777062062 1312736 P 1224 Proteobacteria
18.62% 329590216 555667 C 1236 Gammaproteobacteria
This output indicates that 555667 of the minimizers in the database map directly to
the Gammaproteobacteria class (taxid #1236), and 329590216 (18.62%) of the
database's minimizers map to a taxon in the clade rooted at Gammaproteobacteria.
For more information on kraken2-inspect's options, use its --help option.

11.7.7. Distinct minimizer count information
The KrakenUniq project extended Kraken 1 by, among other things, reporting an
estimate of the number of distinct k-mers associated with each taxon in the input
sequencing data. This allows users to better determine if Kraken's classifications are
due to reads distributed throughout a reference genome, or due to only a small
segment of a reference genome (and therefore likely false positive).

Thanks to the generosity of KrakenUniq's developer Florian Breitwieser in allowing
parts of the KrakenUniq source code to be licensed under Kraken 2's MIT license,
this distinct counting estimation is now available in Kraken 2. Development work by
Martin Steinegger and Ben Langmead helped bring this functionality to Kraken 2.

https://github.com/fbreitwieser/krakenuniq

81

At present, this functionality is an optional experimental feature -- meaning that we
may later alter it in a way that is not backwards compatible with previous versions of
the feature.

To use this functionality, simply run the kraken2 script with the additional --report-
minimizer-data flag along with --report, e.g.:
kraken2 --db $DBNAME --report k2_report.txt --report-minimizer-data \
--output k2_output.txt sequence_data.fq

This will put the standard Kraken 2 output (formatted as described in [Standard
Kraken Output Format]) in k2_output.txt and the report information in k2_report.txt.
Within the report file, two additional columns will be present, e.g.:
normal report format:

36.40 182 182 S2 211044 Influenza A virus (A/Puerto
Rico/8/1934(H1N1))
modified report format:

36.40 182 182 1688 18 S2 211044 Influenza
A virus (A/Puerto Rico/8/1934(H1N1))
In this modified report format, the two new columns are the fourth and fifth,
respectively representing the number of minimizers found to be associated with a
taxon in the read sequences (1688), and the estimate of the number of distinct
minimizers associated with a taxon in the read sequence data (18). This would
indicate that although 182 reads were classified as belonging to H1N1 influenza,
only 18 distinct minimizers led to those 182 classifications.

The format with the --report-minimizer-data flag, then, is similar to that described in
[Sample Report Output Format], but slightly different. The fields in this new format,
from left-to-right, are:

1. Percentage of fragments covered by the clade rooted at this taxon
2. Number of fragments covered by the clade rooted at this taxon
3. Number of fragments assigned directly to this taxon
4. Number of minimizers in read data associated with this taxon (new)
5. An estimate of the number of distinct minimizers in read data associated with

this taxon (new)
6. A rank code, indicating (U)nclassified, (R)oot, (D)omain, (K)ingdom, (P)hylum,

(C)lass, (O)rder, (F)amily, (G)enus, or (S)pecies. Taxa that are not at any of
these 10 ranks have a rank code that is formed by using the rank code of the
closest ancestor rank with a number indicating the distance from that rank.
E.g., "G2" is a rank code indicating a taxon is between genus and species and
the grandparent taxon is at the genus rank.

7. NCBI taxonomic ID number
8. Indented scientific name

We decided to make this an optional feature so as not to break existing software that
processes Kraken 2's standard report format. However, this new format can be
converted to the standard report format with the command:

cut -f1-3,6-8 k2_new_report.txt > k2_std_report.txt

82

As noted above, this is an experimental feature. We intend to continue development
on this feature, and may change the new format and/or its information if we
determine it to be necessary.

For background on the data structures used in this feature and their interaction with
Kraken, please read the KrakenUniq paper, and please cite that paper if you use this
functionality as part of your work.

11.7.8. Kraken 2 Environment Variables
The kraken2 and kraken2-inpsect scripts supports the use of some environment
variables to help in reducing command line lengths:

 KRAKEN2_NUM_THREADS: if the --threads option is not supplied
to kraken2, then the value of this variable (if it is set) will be used as the
number of threads to run kraken2. (This variable does not affect kraken2-
inspect.)

 KRAKEN2_DB_PATH: much like the PATH variable is used for executables
by your shell, KRAKEN2_DB_PATH is a colon-separated list of directories
that will be searched for the database you name if the named database does
not have a slash (/) character. By default, Kraken 2 assumes the value of this
variable is "." (i.e., the current working directory). This variable can be used to
create one (or more) central repositories of Kraken databases in a multi-user
system. Example usage in bash:

 export
KRAKEN2_DB_PATH="/home/user/my_kraken2_dbs:/data/kraken2_dbs:"

This will cause three directories to be searched, in this order:

i. /home/user/my_kraken2_dbs
ii. /data/kraken2_dbs
iii. the current working directory (caused by the empty string as the third

colon-separated field in the KRAKEN2_DB_PATH string)

The search for a database will stop when a name match is found; if two
directories in the KRAKEN2_DB_PATH have databases with the same name,
the directory of the two that is searched first will have its database selected.
If the above variable and value are used, and the
databases /data/kraken2_dbs/mainDB and ./mainDB are present, then
kraken2 --db mainDB sequences.fa
will classify sequences.fa using /data/kraken_dbs/mainDB; if instead you
wanted to use the mainDB present in the current directory, you would need to
specify a directory path to that database in order to circumvent searching, e.g.:
kraken2 --db ./mainDB sequences.fa
Note that the KRAKEN2_DB_PATH directory list can be skipped by the use of
any absolute (beginning with /) or relative pathname (including at least one /)
as the database name.

 KRAKEN2_DEFAULT_DB: if no database is supplied with the --db option,
the database named in this variable will be used instead. Using this variable,
you can avoid using --db if you only have a single database that you usually
use, e.g. in bash:

 export KRAKEN2_DEFAULT_DB="/home/user/kraken2db"
 kraken2 sequences.fa > kraken2.output

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1568-0

83

This will classify sequences.fa using the /home/user/kraken2db database.
Note that the value of KRAKEN2_DEFAULT_DB will also be interpreted in the
context of the value of KRAKEN2_DB_PATH if you don't
set KRAKEN2_DEFAULT_DB to an absolute or relative pathname. Given the
earlier example in this section, the following:
export KRAKEN2_DEFAULT_DB="mainDB"
kraken2 sequences.fa
will use /data/kraken_dbs/mainDB to classify sequences.fa.

To run kraken2, it can be used the following command

kraken2 --/home/ngs/kraken2/DB --/home/ngs/kraken2/sample.fastq –report
/home/ngs/kraken2/results/sample.kreport –output
/home/ngs/kraken2/results/sample.kraken

output files:

sample.kreport

sample.kraken

sample.kreport format file can visualise using Pavian.

12. Full-length 16S rRNA ONT data analysis using
Bracken

Bracken (Bayesian Reestimation of Abundance with KrakEN) is a highly accurate
statistical method that computes the abundance of species in DNA sequences from
a metagenomics sample. Braken uses the taxonomy labels assigned by Kraken, a
highly accurate metagenomics classification algorithm, to estimate the number of
reads originating from each species present in a sample. Kraken classifies reads to
the best matching location in the taxonomic tree, but does not estimate abundances
of species. We use the Kraken database itself to derive probabilities that describe
how much sequence from each genome is identical to other genomes in the
database, and combine this information with the assignments for a particular sample
to estimate abundance at the species level, the genus level, or above. Combined
with the Kraken classifier, Bracken produces accurate species- and genus-level
abundance estimates even when a sample contains two or more near-identical
species.

12.1. Installation
Bracken is a companion program to Kraken 1 or Kraken 2 While Kraken classifies
reads to multiple levels in the taxonomic tree, Bracken allows estimation of

https://ccb.jhu.edu/software/kraken/

84

abundance at a single level using those classifications (e.g. Bracken can estimate
abundance of species within a sample).

Prior to installing Bracken, please install Kraken: Kraken can be downloaded from
here: http://ccb.jhu.edu/software/kraken/

Easy Bracken Installation:

bash install_bracken.sh
Hard Bracken Installation:

cd src/ && make
Add bracken/bracken-build and scripts in src/ to your PATH

12.2. RUNNING BRACKEN: EASY VERSION
Steps 0/1 are run once per database. If you would like to generate Bracken files for
multiple read lengths, repeat Step 1 specifying the same database but different read
lengths. The script will skip any step already complete.

If you run Kraken using one of the pre-built MiniKraken databases, you can find
corresponding Bracken files here. Do not run bracken-build with MiniKraken.

Step 0: Build a Kraken 1.0 or Kraken 2.0 database
kraken-build --db ${KRAKEN_DB} --threads ${THREADS}
kraken2-build --db ${KRAKEN_DB} --threads ${THREADS}

 ${KRAKEN_DB} is the path to a built Kraken database which also must contain:
o the taxonomy/nodes.dmp file
o and library sequences *.fna, *.fa, or *.fasta in the library directory.

Step 1: Generate the Bracken database file (databaseXmers.kmer_distrib)

It is highly encouraged for users to run the following scripts with 10-20 threads. [if run
single-threaded, kraken/kraken2 and kmer2read_distr will take hours-days] Please
note that the flags for this script are single lettered

If Kraken 1.0 or Kraken 2.0 is included in your PATH, run the following

bracken-build -d ${KRAKEN_DB} -t ${THREADS} -k ${KMER_LEN} -l ${READ_LEN}
Otherwise, direct the program using "-x" to the installation/location of the ./kraken
or ./kraken2 scripts

bracken-build -d ${KRAKEN_DB} -t ${THREADS} -k ${KMER_LEN} -l ${READ_LEN} -x
${KRAKEN_INSTALLATION}

`${KRAKEN_DB}` = location of the built Kraken 1.0 or Kraken 2.0 database
`${THREADS}` = number of threads to use with Kraken and the Bracken

scripts
`${KMER_LEN}` = length of kmer used to build the Kraken database

Kraken 1.0 default kmer length = 31
Kraken 2.0 default kmer length = 35
Default set in the script is 35.

`${READ_LEN}` = the read length of your data
e.g., if you are using 100 bp reads, set it to

`100`.

http://ccb.jhu.edu/software/kraken/
https://ccb.jhu.edu/software/bracken/

85

Step 2: Run Kraken 1.0 or Kraken 2.0 AND Generate a report file

Kraken 1.0 requires a 2-step process to generate the report file needed by Bracken

kraken --db ${KRAKEN_DB} --threads ${THREADS} ${SAMPLE}.fq > ${SAMPLE}.kraken
kraken-report --db ${KRAKEN_DB} ${SAMPLE}.kraken > ${SAMPLE}.kreport

Kraken 2.0 requires the addition of the --report flag

kraken2 --db ${KRAKEN_DB} --threads ${THREADS} --report ${SAMPLE}.kreport
${SAMPLE}.fq > ${SAMPLE}.kraken
Step 3: Run Bracken for Abundance Estimation

bracken -d ${KRAKEN_DB} -i ${SAMPLE}.kreport -o ${SAMPLE}.bracken -r
${READ_LEN} -l ${LEVEL} -t ${THRESHOLD}

12.3. RUNNING BRACKEN: HARD VERSION
Step 0: Build a Kraken 1.0 or Kraken 2.0 database

kraken-build --db ${KRAKEN_DB} --threads ${THREADS}
kraken2-build --db ${KRAKEN_DB} --threads ${THREADS}

 ${KRAKEN_DB} is the path to a built Kraken database which also must contain:
o the taxonomy/nodes.dmp file
o and library sequences *.fna, *.fa, or *.fasta in the library directory.

Step 1: Generate the Bracken database file (databaseXmers.kmer_distrib)

 It is highly encouraged for users to run the following scripts with 20 threads.

Step 1a: Search all library input sequences against the database

Run the following scripts WITHIN the Kraken database folder:

kraken --db=${KRAKEN_DB} --threads=10 <(find -L library \(-name "*.fna" -o -
name "*.fa" -o -name "*.fasta" \) -exec cat {} +) > database.kraken

kraken2 --db=${KRAKEN_DB} --threads=10 <(find -L library \(-name "*.fna" -o -
name "*.fa" -o -name "*.fasta" \) -exec cat {} +) > database.kraken
Step 1b: Compute classifications for each perfect read from one of the input
sequences

/src/kmer2read_distr --seqid2taxid ${KRAKEN_DB}/seqid2taxid.map --taxonomy
${KRAKEN_DB}/taxonomy --kraken database.kraken --output
database${READ_LEN}mers.kraken

-k ${KMER_LEN} -l ${READ_LEN} -t ${THREADS}

`${KRAKEN_DB}` = location of the built Kraken 1.0 or Kraken 2.0 database
`${THREADS}` = number of threads to use [recommended: 20]
`${KMER_LEN}` = length of kmer used to build the Kraken database

Kraken 1.0 default kmer length = 31
Kraken 2.0 default kmer length = 35
[default: 35]

`${READ_LEN}` = the read length of your data
e.g., if you are using 100 bp reads, set it to

`100`.
Step 1c: Generate the kmer distribution file

The kmer distribution file is generated using the following command line:

86

python generate_kmer_distribution.py -i database${READ_LEN}mers.kraken -o
database${READ_LEN}mers.kmer_distrib

Step 2: Run Kraken 1.0 or Kraken 2.0 AND Generate a report file

Kraken 1.0 requires a 2-step process to generate the report file needed by Bracken

kraken --db ${KRAKEN_DB} --threads ${THREADS} ${SAMPLE}.fq > ${SAMPLE}.kraken
kraken-report --db ${KRAKEN_DB} ${SAMPLE}.kraken > ${SAMPLE}.kreport

Kraken 2.0 requires the addition of the --report flag

kraken2 --db ${KRAKEN_DB} --threads ${THREADS} --report ${SAMPLE}.kreport
${SAMPLE}.fq > ${SAMPLE}.kraken

Step 3: Run Bracken for Abundance Estimation

Given the expected kmer distribution for genomes in a kraken database along with a
kraken report file, the number of reads belonging to each species (or genus) is
estimated using the estimate_abundance.py file, run with the following command line:

python estimate_abundance.py -i ${SAMPLE}.kreport -k
database${READ_LEN}mers.kmer_distrib -l ${CLASSIFICATION_LVL} -t
${THRESHOLD} -o ${BRACKEN_OUTPUT_FILE}.bracken
The following required parameters must be specified:

 ${SAMPLE}.kreport - the kraken report generated for a given dataset
 database${READ_LEN}mers.kmer_distrib - the file generated by

generate_kmer_distribution.py
 {BRACKEN_OUTPUT_FILE}.bracken - the desired name of the output file to

be generated by the code

The following optional parameters may be specified:

 ${CLASSIFICATION_LVL} - Default = 'S'. This specifies that abundance
estimation will calculate estimated reads for each species. Other possible
options are K (kingdom level), P (phylum), C (class), O (order), F (family), and
G (genus).

 ${THRESHOLD} - Default = 10. For species classification, any species with
<= 10 (or otherwise specified) reads will not receive any additional reads from
higher taxonomy levels when distributing reads for abundance estimation. If
another classification level is specified, thresholding will occur at that level.

Output Kraken-Style Bracken Report

By default, this script will also recreate the report file using the new Bracken
numbers.

1. The new report file will be found in the same folder as the original report file,
with "bracken" included in the name.

2. Levels below the estimate-level will not be printed.
3. Any levels whose reads were below the threshold will not be included

87

4. Percentages will be re-calculated for the remaining levels
5. Unclassified reads will not be included in the report.

Example abundance estimation

The following sample input and output files are included in the sample_data/
folder: sample_test.report - Kraken report file generated from the kraken-report
command. sample_kmer_distr_75mers.txt - example kmer distribution file generated
by generate_kmer_distribution.py sample_output_species_abundance.txt - Bracken
species abundance estimation for
sample_test.report sample_output_bracken.report - Kraken report style file with all
reads redistributed to the species level
Due to size constraints, the following files are not included in the sample_data/
folder: sample_test.kraken - Kraken output file used to generate the Kraken report
file database.kraken - Initial Kraken classification of every
genome database75mers.kraken_cnts - Counting of kmer abundances
The following commands were used to generate each individual file:

1. kraken --db${KRAKEN_DB} --threads=10 sample.fa > sample_test.kraken
kraken-report --db=${KRAKEN_DB} sample_test.kraken > sample_test.report

2. kraken --db=${KRAKEN_DB} --fasta_input --threads=10 <(find -L library -
name "*.fna" -o -name "*.fa" -o -name "*.fasta" -exec cat {} +) >
database.kraken perl count-kmer-abubndances.pl --db=${KRAKEN_DB} --read-
length=75 database.kraken > database75mers.kraken_cnts

3. python generate_kmer_distribution.py -i database75mers.kraken_cnts -o
sample_kmer_distr_75mers.txt

4. python estimate_abundance.py -i sample_test.report -k
sample_kmer_distr_75mers.txt -l S -t 10 -o
sample_output_species_abundance.txt

12.4. Kraken Tools
For news and updates, refer to the github
page: https://github.com/jenniferlu717/KrakenTools/

KrakenTools is a suite of scripts to be used for post-analysis of
Kraken/KrakenUniq/Kraken2/Bracken results. Please cite the relevant paper if using
KrakenTools with any of the listed programs.

Links to Kraken github pages

1. Kraken 1
2. Kraken 2
3. KrakenUniq
4. Bracken

For issues with any of the above programs, please open a github issue on their
respective github pages. This github repository is dedicated to only the scripts
provided here.

https://github.com/jenniferlu717/KrakenTools/
https://github.com/DerrickWood/kraken
https://github.com/DerrickWood/kraken2
https://github.com/fbreitwieser/krakenuniq
https://github.com/jenniferlu717/Bracken

88

Scripts included in KrakenTools

1. extract_kraken_reads.py
2. combine_kreports.py
3. kreport2krona.py
4. kreport2mpa.py
5. combine_mpa.py
6. filter_bracken_out.py
7. fix_unmapped.py
8. make_ktaxonomy.py
9. make_kreport.py

Running Scripts:

No installation required. All scripts are run on the command line as described.

Users can make scripts executable by running

chmod +x myscript.py
./myscript.py -h

extract_kraken_reads.py
This program extract reads classified at any user-specified taxonomy IDs. User must
specify the Kraken output file, the sequence file(s), and at least one taxonomy ID.
Additional options are specified below. As of April 19, 2021, this script is compatible
with KrakenUniq/Kraken2Uniq reports.

1. extract_kraken_reads.py usage/options

python extract_kraken_reads.py

 -k, --kraken MYFILE.KRAKEN.............Kraken output file
 -s, -s1, -1, -U SEQUENCE.FILE..........FASTA/FASTQ sequence file (may be

gzipped)
 -s2, -2 SEQUENCE2.FILE.................FASTA/FASTQ sequence file (for paired

reads, may be gzipped)
 -o, --output2 OUTPUT.FASTA.............output FASTA/Q file with extracted

seqs
 -t, --taxid TID TID2 etc...............list of taxonomy IDs to extract (separated by

spaces)

Optional:

 -o2, --output2 OUTPUT.FASTA.............second output FASTA/Q file with
extracted seqs (for paired reads)

https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools

89

 --fastq-output..........................Instead of producing FASTA files, print FASTQ
files (requires FASTQ input)

 --exclude...............................Instead of finding reads matching specified taxids,
finds reads NOT matching specified taxids.

 -r, --report MYFILE.KREPORT.............Kraken report file (required if specifying
--include-children or --include-parents)

 --include-children......................include reads classified at more specific levels
than specified taxonomy ID levels.

 --include-parents.......................include reads classified at all taxonomy levels
between root and the specified taxonomy ID levels.

 --max #.................................maximum number of reads to save.
 --append................................if output file exists, appends reads
 --noappend..............................[default] rewrites existing output file

2. extract_kraken_reads.py input files

Input sequence files must be either FASTQ or FASTA files. Input files can be
gzipped or not. The program will automatically detect whether the file is gzipped and
whether it is FASTQ or FASTA formatted based on the first character in the file (">"
for FASTA, "@" for FASTQ)

3. extract_kraken_reads.py paired input/output

Users that ran Kraken using paired reads should input both read files into
extract_kraken_reads.py as follows:

extract_kraken_reads.py -k myfile.kraken -s1 read1.fq -s2 reads2.fq
Given paired reads, the script requires users to provide two output file names to
contain extracted reads:

extract_kraken_reads.py -k myfile.kraken -s1 read1.fq -s2 reads2.fq -o extracted1.fq
-o2 extracted2.fq
The delimiter (--delimiter or -d) option has been removed.
`extract_kraken_reads.py -k myfile.kraken ... -o reads_S1.fa -o2 reads_s2.fa

4. extract_kraken_reads.py --exclude flag

By default, reads classified at specified taxonomy IDs will be extracted (and any
taxids selected using --include-parents/--include-children. However, specifying --
exclude will cause the reads NOT classified at any specified taxonomy IDs.
For example:

1. extract_kraken_reads.py -k myfile.kraken ... --taxid 9606 --exclude ==> extract
all reads NOT classified as Human (taxid 9606).

2. extract_kraken_reads.py -k myfile.kraken ... --taxid 2 --exclude --include-
children ==> extract all reads NOT classified as Bacteria (taxid 2) or any
classification in the Bacteria subtree.

3. extract_kraken_reads.py -k myfile.kraken ... --taxid 9606 --exclude --include-
parents ==> extract all reads NOT classified as Human or any classification in
the direct ancestry of Human (e.g. will exclude reads classified at the Primate,
Chordata, or Eukaryota levels).

90

5. extract_kraken_reads.py --include-parents/--include-children flags

By default, only reads classified exactly at the specified taxonomy IDs will be
extracted. Options --include-children and --include parents can be used to extract
reads classified within the same lineage as a specified taxonomy ID. For example,
given a Kraken report containing the following:

[%] [reads] [lreads][lvl] [tid] [name]
100 1000 0 R 1 root
100 1000 0 R1 131567 cellular organisms
100 1000 50 D 2 Bacteria
0.95 950 0 P 1224 Proteobacteria
0.95 950 0 C 1236 Gammaproteobacteria
0.95 950 0 O 91347 Enterobacterales
0.95 950 0 F 543 Enterobacteriaceae
0.95 950 0 G 561 Escherichia
0.95 950 850 S 562 Escherichia coli
0.05 50 50 S1 498388 Escherichia coli C
0.05 50 50 S1 316401 Escherichia coli ETEC

1. extract_kraken_reads.py [options] -t 562 ==> 850 reads classified as E.
coli will be extracted

2. extract_kraken_reads.py [options] -t 562 --include-parents ==> 900 reads
classified as E. coli or Bacteria will be extracted

3. extract_kraken_reads.py [options] -t 562 --include-children ==> 950 reads
classified as E. coli, E. coli C, or E. coli ETEC will be extracted

4. extract_kraken_reads.py [options] -t 498388 ==> 50 reads classified as E. coli
C will be extracted

5. extract_kraken_reads.py [options] -t 498388 --include-parents ==> 950 reads
classified as E. coli C, E. coli, or Bacteria will be extracted

6. extract_kraken_reads.py [options] -t 1 --include-children ==> All classified
reads will be extracted

combine_kreports.py
This script combines multiple Kraken reports into a combined report file.

1. combine_kreports.py usage/options

python complete_kreports.py

 -r 1.KREPORT 2.KREPORT........................Kraken-style reports to combine
 -o COMBINED.KREPORT...........................Output file

Optional:

 --display-headers..............................include headers describing the samples
and columns [all headers start with #]

 --no-headers...................................do not include headers in output

91

 --sample-names.................................give abbreviated names for each sample
[default: S1, S2, ... etc]

 --only-combined................................output uses exact same columns as a
single Kraken-style report file. Only total numbers for read counts and
percentages will be used. Reads from individual reports will not be included.

2. combine_kreports.py output

Percentage is only reported for the summed read counts, not for each individual
sample.

The output file therefore contains the following tab-delimited columns:

 perc............percentage of total reads rooted at this clade
 tot_alltotal reads rooted at this clade (including reads at more specific

clades)
 tot_lvl.........total reads at this clade (not including reads at more specific

clades)
 1_all...........reads from Sample 1 rooted at this clade
 1_lvl...........reads from Sample 1 at this clade
 2_all...........""
 2_lvl...........""
 etc..
 lvl_type........Clade level type (R, D, P, C, O, F, G, S....)
 taxid...........taxonomy ID of this clade
 name............name of this clade

kreport2krona.py
This program takes a Kraken report file and prints out a krona-compatible TEXT file

1. kreport2krona.py usage/options

python kreport2krona.py

 -r/--report MYFILE.KREPORT........Kraken report file
 -o/--output MYFILE.KRONA..........Output Krona text file

Optional:

 --no-intermediate-ranks...........[default]only output standard levels
[D,P,C,O,F,G,S]

 --intermediate-ranks..............include non-standard levels

2. kreport2krona.py example usage

kraken2 --db KRAKEN2DB --threads THREADNUM --report MYSAMPLE.KREPORT
\
--paired SAMPLE_1.FASTA SAMPLE_2.FASTA > MYSAMPLE.KRAKEN2

92

python kreport2krona.py -r MYSAMPLE.KREPORT -o MYSAMPLE.krona
ktImportText MYSAMPLE.krona -o MYSAMPLE.krona.html
Krona information: see https://github.com/marbl/Krona.

3. kreport2krona.py example output

--no-intermediate-ranks
6298 Unclassified
8 k__Bacteria
4 k__Bacteria p_Proteobacteria
6 k__Bacteria p_Proteobacteria c__Gammaproteobacteria
...

--intermediate-ranks
6298 Unclassified
79 x__root
0 x__root x__cellular_organisms
8 x__root x__cellular organisms k__Bacteria
4 x__root x__cellular organisms k__Bacteria p__Proteobacteria
6 x__root x__cellular organisms k__Bacteria p__Proteobacteria

c__Gammaproteobacteria
....

kreport2mpa.py
This program takes a Kraken report file and prints out a mpa (MetaPhlAn) -style
TEXT file

1. kreport2mpa.py usage/options

python kreport2mpa.py

 -r/--report MYFILE.KREPORT........Kraken report file
 -o/--output MYFILE.MPA.TXT........Output MPA-STYLE text file

Optional:

 --display-header..................display header line (#Classification,
MYFILE.KREPORT) [default: no header]

 --no-intermediate-ranks...........[default] only output standard levels
[D,P,C,O,F,G,S]

 --intermediate-ranks..............include non-standard levels
 --read-count......................[default] use read count for output
 --percentages.....................use percentage of total reads for output

2. kreport2mpa.py example usage

kraken2 --db KRAKEN2DB --threads THREADNUM --report MYSAMPLE.KREPORT
\
--paired SAMPLE_1.FASTA SAMPLE_2.FASTA > MYSAMPLE.KRAKEN2

https://github.com/marbl/Krona

93

python kreport2mpa.py -r MYSAMPLE.KREPORT -o MYSAMPLE.MPA.TXT
3. kreport2mpa.py example output

The output will contain one tab character inbetween the classification and the read
count.

--no-intermediate-ranks/--read-count
#Classification SAMPLE.KREPORT
k__Bacteria 36569
k__Bacteria|p__Proteobacteria 21001
k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria 11648
...

--intermediate-ranks/--read-count
#Classification SAMPLE.KREPORT
x__cellular_organisms 38462
x__cellular_organisms|k__Bacteria 36569
x__cellular_organisms|k__Bacteria|p__Proteobacteria 21001
...

combine_mpa.py
This program combines multiple outputs from kreport2mpa.py. Files to be combined
must have been generated using the same kreport2mpa.py options.

Important:

1. Input files to combine_mpa.py cannot be a mix of intermediate/no
intermediate rank outputs.

2. Input files should be generated using the same Kraken database.
3. Input files cannot be a mix of read counts/percentage kreport2mpa.py

outputs. combine_mpa.py will not test the input files prior to combining.

If no header is in a given sample file, the program will number the files "Sample #1",
"Sample #2", etc.

1. combine_mpa.py usage/options

python combine_mpa.py

 -i/--input MYFILE1.MPA MYFILE2.MPA.......Multiple MPA-STYLE text files
(separated by spaces)

 -o/--output MYFILE.COMBINED.MPA..........Output MPA-STYLE text file

2. combine_mpa.py example output

#Classification Sample #1 Sample #2
k__Bacteria 36569 20034
k__Bacteria|p__Proteobacteria 21001 18023
k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria 11648 15000

https://github.com/jenniferlu717/KrakenTools

94

filter_bracken_out.py
This program takes the output file of a Bracken report and filters the desired
taxonomy IDs.

1. filter_bracken_out.py usage/options

python filter_bracken_out.py

 -i/--input MYFILE.BRACKEN..........Bracken output file
 -o/--output MYFILE.BRACKEN_NEW.....Bracken-style output file with filtered

taxids
 --include TID TID2.................taxonomy IDs to include in output file [space-

delimited]
 --exclude TID TID2.................taxonomy IDs to exclude in output file [space-

delimited]

User should specify either taxonomy IDs with --include or --exclude. If both are
specified, taxonomy IDs should not be in both lists and only taxonomies to include
will be evaluated.
When specifying the --include flag, only lines for the included taxonomy IDs will be
extracted to the filtered output file. The percentages in the filtered file will be re-
calculated so the total percentage in the output file will sum to 100%.

When specifying the --exclude flag alone, all lines in the Bracken file will be
preserved EXCEPT for the lines matching taxonomy IDs provided.

2. filter_bracken_out.py example usage

This program can be useful for isolating a subset of species to better understand the
distribution of those particular species in the sample.

For example:

 python filter_bracken_out.py [options] --include 1764 1769 1773 1781
39689 will allow users to get the relative percentages of Mycobacterium avium,
marinum, tuberculosis, leprae, and gallinarum in their samples.

In other cases, users may want to focus on the distribution of all species that are
NOT the host species in a given sample. This program can then recalculate
percentage distributions for species when excluding reads for the host.

For example, given this output:

name tax_id tax_lvl kraken.... added... new.... fraction...
Homo sapiens 9606 S 999000 0.999000
Streptococcus pyogenes 1314 S 10 0.000001
Streptococcus agalactiae 1311 S 5 0.000000
Streptococcus pneumoniae 1313 S 3 0.000000
Bordetella pertussis 520 S 20 0.000002

95

...
Users may not be interested in the 999,000 reads that are host DNA, but would
rather know the percentage of non-host reads for each of the non-host species.
Using python filter_bracken_out.py [options] --exclude 9606 allows better resolution
of the non-host species, allowing each of the fraction of reads to be recalculated out
of 1,000 instead of 1,000,000 reads in the above example. The output would then be:
name tax_id tax_lvl kraken.... added... new.... fraction...
Streptococcus pyogenes 1314 S 10 0.01000
Streptococcus agalactiae 1311 S 5 0.05000
Streptococcus pneumoniae 1313 S 3 0.03000
Bordetella pertussis 520 S 200 0.20000
...

fix_unmapped.py
When building a Kraken database, an "unmapped.txt" file may be generated if a
taxonomy for a given sequence is not found. This script can search through any
accession2taxid files provided and the unmapped.txt file and generate a
seqid2taxid.map file to be appended to the one already generated.

1. fix_unmapped.py usage/options

python fix_unmapped.py

 -i/--input unmapped.txt...........Any file containing accession IDs to map
 --accession2taxid REF_FILES.......Any tab-delimited file with 4 columns,

accessions = column 1, taxonomy IDs = column 3
 -o/--output OUT_FILE..............Output tab-delimited file with 2 columns:

accessions and taxids

Optional:

 -r/--remaining....................file containing any unmapped accession IDs after
search [default: still_unmapped.txt]

2. fix_unmapped.py example usage

rm *.k2d
mv seqid2taxid.map seqid2taxid_1.map
python fix_unmapped -i unmapped.txt --accession2taxid taxonomy/*accession2taxid
-o seqid2taxid_temp.map
cat seqid2taxid_1.map seqid2taxid_temp.map
kraken2-build --build --db . --threads 4

make_ktaxonomy.py

96

For future KrakenTools scripts, this program generates a single text file that contains
all of the taxonomy information required. This program is intended to generate a
single text taxonomy file for any Kraken 1, Kraken 2, or KrakenUniq database.

Important: The output of this program does not replace any Kraken database file (do
not replace your taxo.k2d or .db files).

1. make_ktaxonomy.py usage/options

python make_ktaxonomy.py

 --nodes taxonomy/nodes.dmp...........nodes.dmp file in Kraken DB taxonomy/
folder

 --names taxonomy/names.dmp...........names.dmp file in Kraken DB
taxonomy/ folder

 --seqid2taxid seqid2taxid.map........seqid2taxid.map file generated by kraken-
build/kraken2-build/krakenuniq-build when building the database. This is a 2-
column tab-delimited file containing sequence IDs and taxonomy IDs.

 -o/--output OUT_FILE.................Output text file. More details below

The program will inform users if a taxonomy ID is listed in the seqid2taxid.map file
but not in either the nodes.dmp or the names.dmp files.

2. make_ktaxonomy.py output file format

The output file is similar to the nodes.dmp/names.dmp file format, but not identical.
Each of the following columns is separated by a tab-vertical line-tab (e.g. \t|\t).

1. taxonomy ID
2. parent taxonomy ID
3. rank type (R = root, D = domain/superkingdom, P = phylum, etc.)
4. level number (distance from root)
5. name

For ranks outside of the traditional taxonomy ranks (R, D, P, C, O, F, G, S), the rank
type will be assigned based on the closest parent, with a number to specify distance
from that parent. For example, the strains will be labeled with S1 while ranks
inbetween Genus and Species will be labeled with G1, G2, etc.
Currently, names for each node are selected based on the first name listed in
the names.dmp file or the name designated as scientific name. scientific names will
be preferred over all others.
3. make_ktaxonomy.py required input

1. taxonomy/nodes.dmp
2. taxonomy/names.dmp
3. seqid2taxid.map

4. KrakenTools scripts requiring make_ktaxonomy.py output:

97

1. make_kreport.py

make_kreport.py
This program will generate a kraken-style report file from the kraken output file.
Currently, this only generates reports for Kraken 1 or Kraken 2. This program does
not currently work for KrakenUniq output files (to be completed in a future project).

This program requires that users first generate the taxonomy file created
by make_ktaxonomy.py.

1. make_kreport.py usage/options

python make_kreport.py

 -i/-k/--input KRAKEN_FILE........default Kraken output file (5 tab-delimited
columns, taxid in third column)

 -t/--taxonomy TAXONOMY_FILE......output from make_ktaxonomy.py
 -o/--output REPORT_FILE..........output Kraken report file (6 tab-delimited

columns)

Optional

 --use-read-len...................make report using summed read lengths instead of
read counts

2. make_kreport.py example

Given a Kraken 2 database KRAKENDB/ and sample file EXAMPLE_READS.fq, the
following commands can be used to generate a Kraken report file with this script.
python make_ktaxonomy.py --nodes KRAKENDB/taxonomy/nodes.dmp --names
KRAKENDB/taxonomy/names.dmp --seqid2taxid KRAKENDB/seqid2taxid.map -o
KRAKENDB/mydb_taxonomy.txt
kraken2 --db KRAKENDB --threads 4 EXAMPLE_READS.fq > EXAMPLE.kraken2
python make_kreport.py -i EXAMPLE.kraken2 -t KRAKENDB/mydb_taxonomy.txt -o
EXAMPLE.kreport2
3. make_kreport.py --use-read-len option

By default, the output Kraken report will list read counts for each taxonomy ID.
However, if all read lengths are not the same, users can add the --use-read-
len option, which will result in reporting summed read lengths for each taxon.
4. make_kreport.py output format

The output format for kreport.py is identical to the format generated by kraken-
report or the --report switch with kraken2. The output file contains 6 tab-delimited
columns as follows:

1. Percentage of total reads
2. Reads classified within sub-tree

https://github.com/jenniferlu717/KrakenTools
https://github.com/jenniferlu717/KrakenTools

98

3. Reads classified at this specific node (reads cannot be more specifically
classified)

4. Level type (R = root, K = kingdom, P = phylum, etc)
5. Taxonomy ID
6. Name (preceeded by spaces to indicate distance from root)

12.5. Diversity Kraken Tools
For news and updates, refer to the github
page: https://github.com/jenniferlu717/KrakenTools/

KrakenToolsDiversity is a suite of scripts to be used for post-analysis of
Kraken/KrakenUniq/Kraken2/Bracken results. Please cite the relevant paper if using
KrakenTools with any of the listed programs.

Scripts included in Diversity KrakenTools

1. alpha_diversity.py
2. beta_diversity.py

Running Scripts:

No installation required. All scripts are run on the command line as described.

Users can make scripts executable by running

chmod +x myscript.py
./myscript.py -h

alpha_diversity.py

This program calculates alpha diversity, from the Bracken abundance estimation file.
User must specify Bracken output file, and type of alpha diversity to be calculated.
Specific options are specified below.

1. alpha_diversity.py usage/options

python alpha_diversity.py

 -f, --filename MYFILE.BRACKEN..........Bracken output file
 -a, --alpha TYPE.......................Single letter alpha diversity type (Sh, BP, Si, ISi, F)

2. alpha_diversity.py input file

Input Bracken file must be in standard Bracken output file format and must be run
specifically for Abundance Estimation. Example format:

name tax_id tax_lvl kraken.... added... new.... fraction...
Homo sapiens 9606 S 999000 0.999000

https://github.com/jenniferlu717/KrakenTools/
https://github.com/jenniferlu717/KrakenTools/tree/master/DiversityTools
https://github.com/jenniferlu717/KrakenTools/tree/master/DiversityTools

99

Streptococcus pyogenes 1314 S 10 0.000001
Streptococcus agalactiae 1311 S 5 0.000000
Streptococcus pneumoniae 1313 S 3 0.000000
Bordetella pertussis 520 S 20 0.000002

Link to Brack github for reference: Bracken

3. alpha_diversity.py alpha type input

By default, the program will calculate Shannon's alpha:

python alpha_diversity.py -f myfile.bracken
Users can specify which type of alpha diversity from this set:

 Sh......Shannon's alpha diversity
 BP.....Berger-Parker's alpha
 Si.....Simpson's diversity
 ISi.....Inverse Simpson's diversity
 F.......Fisher's index

To calculate berger-parker's alpha:

python alpha_diversity.py -f myfile.bracken -a BP

beta_diversity.py

This program calculates the beta diversity (Bray-Curtis dissimilarity) from kraken,
krona and bracken files.

To calculate the pairwise dissimilarity score, you can call the script with two or more
files as follows:

python beta_diversity.py -i file1.bracken file2.bracken [...] --type bracken
The script supports bracken files, kraken and kracken2 report files and krona files.
Additionally, you can pass any tab-separated file and specify the columns with the
taxonomical information and read counts (--cols).
To only compute the dissimilarity score on a certain taxonomical level (only
supported for kraken and krona files), you can pass --level S (S, G, F or O for species,
genus, family and order level).
For more information, please take a look at the help page.

python beta_diversity.py --help

Braken is two steps from fastq file to estimation abundance txt in our
experiment

1.kraken2 --db /home/ngs/kraken2/DB /home/ngs/kraken2/sample.fastq --report
/home/ngs/kraken2/results/sample.kreport --threads 24 --output /ho
me/ngs/kraken2/results/sample.kraken

https://github.com/jenniferlu717/Bracken

100

output files:

sample.kraken

sample.kreport

2. python est_abundance.py -i /home/ngs/kraken2/results/sample.kreport -k
~/kraken2/Bracken/results/abun/database_kmer_distr_1500mers.txt -l S -t 10 -o
/home/ngs/kraken2/results/sample_output_species_abundance.txt

output file:

sample_output_species_abundance.txt

for alpha diversity:

python alpha_diversity.py -f
/home/ngs/kraken2/results/sample_output_species_abundance.txt -a Sh

for beta diversity:

python beta_diversity.py -i
/home/ngs/kraken2/results/sample1_output_species_abundance.txt
/home/ngs/kraken2/results/sample2_output_species_abundance.txt --type
bracken --level S > /home/ngs/kraken2/results/beta_diversity.txt

13. Full-length 16S rRNA ONT data analysis using
NanoCLUST

NanoCLUST is de novo clustering and consensus building for ONT 16S sequencing data.

The pipeline is built using Nextflow, a workflow tool to run tasks across multiple
compute infrastructures in a very portable manner. It comes with docker containers
making installation trivial and results highly reproducible.

* Before starting Please check “Computing requirements note for NanoCLUST”

to sure whether you have enough RAM to run NanoCLUST

Computing requirements note for NanoCLUST

Clustering step uses up to 32-36GB RAM when working with a real dataset analysis
and default parameters (umap_set_size = 100000). Setting umap_set_size to 50000,
will diminish memory consumption to 10-13GB RAM. When running the pipeline,
kmer_freqs or mostly read_clustering processes could be terminated with status
137 when not enough RAM.

Nextflow automatically uses all available resources in your machine. More cpu
threads enable the pipeline to compute and classify the different clusters at the same
time and hence reduces the overall execution time.

Using the -with-trace option, it is possible to get an execution trace file which
includes computing times and memory consumption metrics for all pipeline
processes

https://www.nextflow.io/

101

Quick Start

i. Install nextflow
ii. Install docker or conda
iii. Clone the NanoCLUST repository from below Website with below command in
Linux and test the pipeline on a minimal dataset with a single command and
docker/conda profiles.

https://github.com/genomicsITER/NanoCLUST

gh repo clone genomicsITER/NanoCLUST

*Download a BLAST database in the NanoCLUST dir for cluster sequence
classification. For NCBI 16S rRNA database:

mkdir db db/taxdb
wget https://ftp.ncbi.nlm.nih.gov/blast/db/16S_ribosomal_RNA.tar.gz && tar -xzvf
16S_ribosomal_RNA.tar.gz -C db
wget https://ftp.ncbi.nlm.nih.gov/blast/db/taxdb.tar.gz && tar -xzvf taxdb.tar.gz
-C db/taxdb

#Using docker profile with container-based dependencies (recommended).
nextflow run main.nf -profile test,docker

iv. Start running your own analysis!

Run a single sample analysis inside NanoCLUST dir using default parameters:

nextflow run main.nf \
-profile docker \
--reads 'sample.fastq' \
--db "db/16S_ribosomal_RNA" \
--tax "db/taxdb/"

Run with the following command for our computer
nextflow run main.nf --profile docker --reads '/home/ngs/nanoclust/sample.fastq'
--db "db/16S_ribosomal_RNA" --"db/taxdb/" –max_memory '58.GB'

After running, please check the below outputs

hdbscan.output.png

rel_abundance_.....png

If it is necessary, “UMAP Clustering and polishing parameters” in nexflow.config
file can be set up for umap_set size, cluster_sel_epsilon, min_cluster_size,
polishing_reads.

https://nf-co.re/usage/installation
https://docs.docker.com/engine/installation/
https://conda.io/miniconda.html
https://github.com/genomicsITER/NanoCLUST

102

14. Metabolomics analysis of full-length 16S rRNA ONT
data using Paprica

Paprica (PAthway PRediction by phylogenetIC placement)

Paprica conducts metabolic inference on (preferably, but not exclusively, NGS) 16S
rRNA gene libraries. Instead of using an OTU based approach however, it uses a
phylogenetic placement approach. This provides a more intuitive connection
between its “hidden state prediction” and library analysis components, and allows
resolution at the strain and species level for some spots on the prokaryotic
phylogenetic tree.

Paprica uses pathways shared between the members of all clades on a reference
tree to determine what pathways are likely to be associated with a phylogenetically
placed read.

Paprica was designed to use a significant amount of resources up front to construct
a database and draft metabolic models for all available completed genomes. You
can avoid this by using the provided database.

To run paprica you will need:
Install some packages

sudo apt-get install build-essential
sudo apt-get install git
sudo apt-get install zip

Install python dependencies, including external python tools
pip3 install numpy
pip3 install biopython
pip3 install joblib
pip3 install pandas
pip3 install seqmagick
pip3 install termcolor

Install RAxML
#git clone https://github.com/stamatak/standard-RAxML.git
#cd standard-RAxML
#sudo make -f Makefile.AVX2.PTHREADS.gcc
#rm -f *.o

Install RAxML-ng
wget https://github.com/amkozlov/raxml-ng/releases/download/0.9.0/raxml-
ng_v0.9.0_linux_x86_64.zip
unzip raxml-ng_v0.9.0_linux_x86_64.zip

Install infernal
cd ~
wget http://eddylab.org/infernal/infernal-1.1.2-linux-intel-gcc.tar.gz
tar -xzvf infernal-1.1.2-linux-intel-gcc.tar.gz
mv infernal-1.1.2-linux-intel-gcc infernal

Install gappa
git clone --recursive https://github.com/lczech/gappa.git
cd gappa;make

103

cd ~

Install epa-ng
Double check that you have all dependencies as described here:
https://github.com/Pbdas/epa-ng#installation.
If the compiler yells at you about not having zlib, you will need to have
zlib1g-dev installed, not just zlib1g!

sudo apt-get install autotools-dev libtool flex bison cmake automake autoconf
git clone https://github.com/Pbdas/epa-ng.git
cd epa-ng;make
cd ~

Modify PATH in .bashrc

TEMPNAME=`whoami`
echo "## added by paprica installer" >> .bashrc
echo "PATH=/home/${TEMPNAME}/pplacer:"'$PATH' >> .bashrc
echo "PATH=/home/${TEMPNAME}/.local/bin:"'$PATH' >> .bashrc
echo "PATH=/home/${TEMPNAME}/infernal/binaries:"'$PATH' >> .bashrc
echo "PATH=/home/${TEMPNAME}/infernal/easel:"'$PATH' >> .bashrc
echo "PATH=/home/${TEMPNAME}/raxml-ng:"'$PATH' >> .bashrc
echo "PATH=/home/${TEMPNAME}/paprica:"'$PATH' >> .bashrc
echo "PATH=/home/${TEMPNAME}/epa-ng/bin:"'$PATH' >> .bashrc
echo "PATH=/home/${TEMPNAME}/gappa/bin:"'$PATH' >> .bashrc
echo "export PATH" >> .bashrc
source .bashrc

Download paprica - redundant cause that's probably how you got this script
git clone https://github.com/bowmanjeffs/paprica.git
cd paprica
chmod a+x *py
chmod a+x *sh

Paprica can be run on OSX (see tutorial linked above), or preferably, on Linux or
Windows using the Windows Subsystem for Linux (see the linux_install.sh script as a
guide).

If you use Docker or Singularity you can download a Docker image with docker pull
jsbowman/paprica:latest

A pipeline to conduct a metabolic inference from 16S rRNA gene sequence libraries.
Check out the Wiki and tutorials (listed above) to get started. Once you've installed
the depenencies the following commands will get you started:

git clone https://github.com/bowmanjeffs/paprica.git
cd paprica
chmod a+x *py
chmod a+x *sh
./paprica-run.sh test bacteria
Alternatively, if you're using the Docker image you can skip installing the
dependencies and just do:

docker pull jsbowman/paprica:latest
docker run -it jsbowman/paprica
cd /paprica
./paprica-run.sh test bacteria

https://github.com/bowmanjeffs/paprica/blob/master/linux_install.sh
https://github.com/bowmanjeffs/paprica/wiki

104

To run paprica the following command can be used in our experiment

 We use fasta file as input for the paprica metabolomic analysis

cd /paprica
./paprica-run.sh sample bacteria

15. References

	1.Abbreviations
	2.Purpose
	3.Principal of the assay
	Flow diagram SARS-CoV-2 whole genome sequencing us

	4.Material
	5.Pre-analytics
	5.1 RNA isolation and quantification
	6.Equipment
	7.Reagent and Consumables
	8.Primers
	9.Assay procedure
	9.1.cDNA synthesis
	9.2 Multiplex PCR
	Denaturation
	Annealing and extension
	 98°C
	 65°C
	 15 seconds
	 5minutes
	 30

	9.3 Pooling
	9.4 Analyzing on agarose gel electrophoresis
	9.5 Purification by AMPure XP Bead
	9.6 Quantify the pool using Qubit dsDNA Assay
	9.7 Normalization
	9.8 Barcoding and Concentrate Library
	Using Rapid Barcoding Kit (SQK-RBK004)
	Using Rapid Barcoding Kit 96 (SQK-RBK110.96)
	9.9 Load to MinION and sequence
	Priming and loading the SpotON Flow Cell R9.4.1
	Priming and Loading the Flongle flow cell

	10.Ending the experiment
	11.Basic bioinformatic for data analysis
	12. Nanopore MinION data analysis
	12.1Quality control of sequencing data using RAMPART
	12.2Field-Bioinformatics
	12.3High accuracy basecalling with guppy
	12.4Information on nomenclatures, variants, mutations,
	12.4.1GISAID
	12.4.2Nextclade and Pangolin to identify the variants an
	12.5Phylogeny

	13. References
	1 Abbreviations
	2 Purpose
	3 Principal of the assay
	4 Material
	5 Pre-analytics
	6 Equipment
	7 Reagent and Consumables
	8 Assay procedure
	8.1 Library preparation for Illumina
	 8.1.1 Tagment Genomic DNA
	8.1.2 Post Tagmentation Cleanup
	8.1.3 Amplify Tagmented DNA
	8.1.4 Clean Up Libraries
	8.1.5 Check libraries Quantity and Quality
	8.1.6 Normalize libraries
	8.1.7 Denature and Dilute Library

	8.2 Library preparation for ONT
	8.2.1 Using Rapid Barcoding Kit (SQK-RBK004)
	8.2.2 Using Rapid Barcoding Kit 96 (SQK-RBK110.96)

	 9 Data analysis
	1.Basic bioinformatic for data analysis
	9.1 Ilumina data
	9.2 Nanopore data
	9.3 Hybrid assembly by Unicycler
	9.4 Long read only assembly by Flye
	9.5 Quality check of the output from Unicycler by
	9.6 Search for anti-microbial resistant gene
	9.6.1 By AMR finder (
	9.6.2 By Abricate (

	9.7 Core-genome alignment and Analysis (

	10 References
	1.Abbreviations
	2.Purpose
	3.Principal of the assay
	4.Material
	5.Pre-analytics
	6.Equipment
	7.Reagent and Consumables
	8.Assay procedure
	8.1. Amplification
	8.2. Analyzing on agarose gel electrophoresis
	8.3. Purification by AMPure XP Bead
	8.4. Quantify the pool using Qubit dsDNA Assay
	8.5. Pooling and Normalization
	8.6. Load to MinION and Sequence
	Priming and loading the SpotON Flow Cell
	 Loading the Flongle flow cell

	9.Data analysis and Basic Bioinformatic
	9.1.Linux
	9.2.Conda and Miniconda
	9.3.Docker
	9.4.GitHub
	9.5.Visual Studio Code

	10.Full-length 16S rRNA ONT data analysis using Centr
	10.1.Quick guide
	Installation from source
	Building indexes

	10.2.KRONA
	Installing
	Options for install.pl:

	10.3.PAVIAN
	Installation and deployment
	Installing R samtools
	Installing to Shinyapps.io
	Docker image
	Screenshots

	11.Full-length 16S rRNA ONT data analysis using Krake
	11.1.System Requirements
	11.2.Installation
	11.3.Kraken 2 Databases
	11.4.Standard Kraken 2 Database
	11.5.Classification
	11.6.Output Formats
	11.7.Translated Search
	11.7.1.Custom Databases
	11.7.2.Masking of Low-complexity Sequences
	11.7.3.Special Databases
	11.7.4.16S Databases
	11.7.5.Confidence Scoring
	11.7.6.Inspecting a Kraken 2 Database's Contents
	11.7.7.Distinct minimizer count information
	11.7.8.Kraken 2 Environment Variables

	12. Full-length 16S rRNA ONT data analysis using Brac
	12.1.Installation
	12.2.RUNNING BRACKEN: EASY VERSION
	12.3.RUNNING BRACKEN: HARD VERSION
	12.4.Kraken Tools
	2. make_ktaxonomy.py output file format

	12.5.Diversity Kraken Tools

	13.Full-length 16S rRNA ONT data analysis using NanoC
	14. Metabolomics analysis of full-length 16S rRNA ONT
	To run paprica you will need:

	15.References

